Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/20/10.1063/1.4935983
1.
1. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “ On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 54865492 (1995).
http://dx.doi.org/10.1063/1.1146073
2.
2. P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “ Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D: Appl. Phys. 29, 133146 (1996).
http://dx.doi.org/10.1088/0022-3727/29/1/023
3.
3. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “ Demonstration of x-ray Talbot interferometry,” Jpn. J. Appl. Phys., Part 2: Lett. 42, L866 (2003).
http://dx.doi.org/10.1143/JJAP.42.L866
4.
4. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “ X-ray phase imaging with a grating interferometer,” Opt. Express 13, 62966304 (2005).
http://dx.doi.org/10.1364/OPEX.13.006296
5.
5. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “ Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2, 258261 (2006).
http://dx.doi.org/10.1038/nphys265
6.
6. T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “ Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373, 595598 (1995).
http://dx.doi.org/10.1038/373595a0
7.
7. D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “ Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 20152025 (1997).
http://dx.doi.org/10.1088/0031-9155/42/11/001
8.
8. A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. H. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “ An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28, 16101619 (2001).
http://dx.doi.org/10.1118/1.1388219
9.
9. A. Olivo, K. Ignatyev, P. R. T. Munro, and R. D. Speller, “ Noninterferometric phase-contrast images obtained with incoherent x-ray sources,” Appl. Opt. 50, 17651769 (2011).
http://dx.doi.org/10.1364/AO.50.001765
10.
10. P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “ Phase and absorption retrieval using incoherent X-ray sources,” Proc. Natl. Acad. Sci. 109, 1392213927 (2012).
http://dx.doi.org/10.1073/pnas.1205396109
11.
11. A. Olivo and I. Robinson, “ Taking X-ray phase contrast imaging into mainstream applications' and its satellite workshop ‘Real and reciprocal space X-ray imaging’,” Philos. Trans. R. Soc. A 372, 20130359 (2014).
http://dx.doi.org/10.1098/rsta.2013.0359
12.
12. J. Zambelli, N. Bevins, Z. Qi, and G. H. Chen, “ Radiation dose efficiency comparison between differential phase contrast CT and conventional absorption CT,” Med. Phys. 37, 24732479 (2010).
http://dx.doi.org/10.1118/1.3425785
13.
13. P. Munro, K. Ignatyev, R. Speller, and A. Olivo, “ Design of a novel phase contrast X-ray imaging system for mammography,” Phys. Med. Biol. 55, 41694185 (2011).
http://dx.doi.org/10.1088/0031-9155/55/14/014
14.
14. T. P. Millard, M. Endrizzi, K. Ignatyev, C. K. Hagen, P. R. T. Munro, R. D. Speller, and A. Olivo, “ Method for automatization of the alignment of a laboratory based x-ray phase contrast edge illumination system,” Rev. Sci. Instrum. 84, 083702 (2013).
http://dx.doi.org/10.1063/1.4816827
15.
15. T. P. Millard, M. Endrizzi, P. C. Diemoz, C. K. Hagen, and A. Olivo, “ Monte Carlo model of a polychromatic laboratory based edge illumination x-ray phase contrast system,” Rev. Sci. Instrum. 85, 053702 (2014).
http://dx.doi.org/10.1063/1.4873328
16.
16. A. Olivo and R. Speller, “ A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91, 074106 (2007).
http://dx.doi.org/10.1063/1.2772193
17.
17. P. C. Diemoz, C. K. Hagen, M. Endrizzi, and A. Olivo, “ Sensitivity of laboratory based implementations of edge illumination X-ray phase-contrast imaging,” Appl. Phys. Lett. 103, 244104 (2013).
http://dx.doi.org/10.1063/1.4845015
18.
18. P. C. Diemoz and A. Olivo, “ On the origin of contrast in edge illumination X-ray phase-contrast imaging,” Opt. Express 22, 2819928214 (2014).
http://dx.doi.org/10.1364/OE.22.028199
19.
19. M. Endrizzi, F. A. Vittoria, G. Kallon, D. Basta, P. C. Diemoz, A. Vincenzi, P. Delogu, R. Bellazzini, and A. Olivo, “ Achromatic approach to phase-based multi-modal imaging with conventional X-ray sources,” Opt. Express 23, 16473 (2015).
http://dx.doi.org/10.1364/OE.23.016473
20.
20. P. R. T. Munro, C. K. Hagen, M. B. Szafraniec, and A. Olivo, “ A simplified approach to quantitative coded aperture X-ray phase imaging,” Opt. Express 21, 1118711201 (2013).
http://dx.doi.org/10.1364/OE.21.011187
21.
21. M. Endrizzi, P. C. Diemoz, T. P. Millard, J. Louise Jones, R. D. Speller, I. K. Robinson, and A. Olivo, “ Hard X-ray dark-field imaging with incoherent sample illumination,” Appl. Phys. Lett. 104, 024106 (2014).
http://dx.doi.org/10.1063/1.4861855
22.
22. I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “ Two-dimensional X-ray grating interferometer,” Phys. Rev. Lett. 105, 25 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.248102
23.
23. C. Kottler, C. David, F. Pfeiffer, and O. Bunk, “ A two-directional approach for grating based differential phase contrast imaging using hard x-rays,” Opt. Express 15, 11751181 (2007).
http://dx.doi.org/10.1364/OE.15.001175
24.
24. K. Nagai, “ A phase demodulation method for two-dimensional grating-based X-ray interferometry,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372, 20130034 (2014).
http://dx.doi.org/10.1098/rsta.2013.0034
25.
25. H. H. Wen, E. E. Bennett, R. Kopace, A. F. Stein, and V. Pai, “ Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings,” Opt. Lett. 35, 19321934 (2010).
http://dx.doi.org/10.1364/OL.35.001932
26.
26. G. Sato, T. Kondoh, H. Itoh, S. Handa, K. Yamaguchi, T. Nakamura, K. Nagai, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “ Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube,” Opt. Lett. 36, 35513553 (2011).
http://dx.doi.org/10.1364/OL.36.003551
27.
27. A. Olivo, S. E. Bohndiek, J. A. Griffiths, A. Konstantinidis, and R. D. Speller, “ A non-free-space propagation x-ray phase contrast imaging method sensitive to phase effects in two directions simultaneously,” Appl. Phys. Lett. 94, 044108 (2009).
http://dx.doi.org/10.1063/1.3078410
28.
28. L. Rigon, F. Arfelli, and R. H. Menk, “ Generalized diffraction enhanced imaging to retrieve absorption, refraction and scattering effects,” J. Phys. D. Appl. Phys. 40, 30773089 (2007).
http://dx.doi.org/10.1088/0022-3727/40/10/011
29.
29. K. Ignatyev, P. R. T. Munro, R. D. Speller, and A. Olivo, “ Effects of signal diffusion on x-ray phase contrast images,” Rev. Sci. Instrum. 82, 073702 (2011).
http://dx.doi.org/10.1063/1.3606442
30.
30. O. Oltulu, Z. Zhong, M. Hasnah, M. N. Wernick, and D. Chapman, “ Extraction of extinction, refraction and absorption properties in diffraction enhanced imaging,” J. Phys. D: Appl. Phys. 36, 21522156 (2003).
http://dx.doi.org/10.1088/0022-3727/36/17/320
31.
31. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “ Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 712 (2004).
http://dx.doi.org/10.1111/j.0022-2720.2004.01293.x
32.
32.See supplementary material at http://dx.doi.org/10.1063/1.4935983 for the two, one-dimensionally retrieved phase integrated images of the vertcial and horizontal cylinders that are shown in the text, respectively.[Supplementary Material]
33.
33. C. K. Hagen, P. C. Diemoz, M. Endrizzi, and A. Olivo, “ The effect of the spatial sampling rate on quantitative phase information extracted from planar and tomographic edge illumination x-ray phase contrast images,” J. Phys. D: Appl. Phys. 47, 455401 (2014).
http://dx.doi.org/10.1088/0022-3727/47/45/455401
34.
34. K. Scherer, L. Birnbacher, M. Chabior, J. Herzen, D. Mayr, S. Grandl, A. Sztrókay-Gaul, K. Hellerhoff, F. Bamberg, and F. Pfeiffer, “ Bi-directional x-ray phase-contrast mammography,” PLoS One 9, e93502 (2014).
http://dx.doi.org/10.1371/journal.pone.0093502
35.
35. M. Langer, P. Cloetens, and F. Peyrin, “ Regularization of phase retrieval with phase-attenuation duality prior for 3-D holotomography,” IEEE Trans. Image Process. 19, 24282436 (2010).
http://dx.doi.org/10.1109/TIP.2010.2048608
36.
36. I. Zanette, T. Zhou, A. Burvall, U. Lundström, D. H. Larsson, M. Zdora, P. Thibault, F. Pfeiffer, and H. M. Hertz, “ Speckle-based X-ray phase-contrast and dark-field imaging with a laboratory source,” Phys. Rev. Lett. 112(25), 253903 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.253903
37.
37. L. Rigon, H. J. Besch, F. Arfelli, R. H. Menk, G. Heitner, and H. Plothow-Besch, “ A new DEI algorithm capable of investigating sub-pixel structures,” J. Phys. D: Appl. Phys. 36, A107A112 (2003).
http://dx.doi.org/10.1088/0022-3727/36/10A/322
38.
38. P. Modregger, S. Rutishauser, J. Meiser, C. David, and M. Stampanoni, “ Two-dimensional ultra-small angle X-ray scattering with grating interferometry,” Appl. Phys. Lett. 105, 024102 (2014).
http://dx.doi.org/10.1063/1.4890090
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/20/10.1063/1.4935983
Loading
/content/aip/journal/apl/107/20/10.1063/1.4935983
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/20/10.1063/1.4935983
2015-11-17
2016-12-11

Abstract

We report on a preliminary laboratory based x-ray phase-contrast imagingsystem capable of achieving two-directional phase sensitivity, thanks to the use of L-shaped apertures. We show that in addition to apparent absorption, two-directional differential phase images of an object can be quantitatively retrieved by using only three input images. We also verify that knowledge of the phase derivatives along both directions allows for straightforward phase integration with no streak artefacts, a known problem common to all differential phase techniques. In addition, an analytical method for 2-directional dark field retrieval is proposed and experimentally demonstrated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/20/1.4935983.html;jsessionid=_WRgyNBz3o5RsH5SeP_9XoPM.x-aip-live-03?itemId=/content/aip/journal/apl/107/20/10.1063/1.4935983&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/20/10.1063/1.4935983&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/20/10.1063/1.4935983'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,