Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/20/10.1063/1.4935984
1.
1. G. Veronis and S. Fan, J. Lightwave Technol. 25, 2511 (2007).
http://dx.doi.org/10.1109/JLT.2007.903544
2.
2. A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, Nat. Photonics 8, 229 (2014).
http://dx.doi.org/10.1038/nphoton.2014.9
3.
3. H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, Nano Lett. 14, 6463 (2014).
http://dx.doi.org/10.1021/nl502998z
4.
4. K. Liu, C. R. Ye, S. Kahn, and V. J. Sorger, Laser Photonics Rev. 9, 172 (2015).
http://dx.doi.org/10.1002/lpor.201400219
5.
5. D. Dai and S. He, Opt. Express 17, 16646 (2009).
http://dx.doi.org/10.1364/OE.17.016646
6.
6. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, Opt. Express 18, 12971 (2010).
http://dx.doi.org/10.1364/OE.18.012971
7.
7. M. Wu, Z. Han, and V. Van, Opt. Express 18, 11728 (2010).
http://dx.doi.org/10.1364/OE.18.011728
8.
8. I. Goykhman, B. Desiatov, and U. Levy, Appl. Phys. Lett. 97, 141106 (2010).
http://dx.doi.org/10.1063/1.3496463
9.
9. L. Gao, L. Tang, F. Hu, R. Guo, X. Wang, and Z. Zhou, Opt. Express 20, 11487 (2012).
http://dx.doi.org/10.1364/OE.20.011487
10.
10. N. Zhu and T. Mei, Opt. Lett. 37, 1751 (2012).
http://dx.doi.org/10.1364/OL.37.001751
11.
11. D. A. Ketzaki, O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, J. Appl. Phys. 114, 113107 (2013).
http://dx.doi.org/10.1063/1.4821796
12.
12. M. P. Nielsen and A. Y. Elezzabi, Appl. Phys. Lett. 103, 051107 (2013).
http://dx.doi.org/10.1063/1.4817547
13.
13. N.-N. Feng, M. L. Brongersma, and L. Dal Negro, IEEE J. Quantum Electron. 43, 479 (2007).
http://dx.doi.org/10.1109/JQE.2007.897913
14.
14. D. Dai and S. He, Opt. Express 18, 17958 (2010).
http://dx.doi.org/10.1364/OE.18.017958
15.
15. X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, Appl. Opt. 50, 3428 (2011).
http://dx.doi.org/10.1364/AO.50.003428
16.
16. R. Thomas, Z. Ikonić, and R. W. Kelsall, IEEE J. Sel. Top. Quantum Electron. 19, 4601708 (2013).
http://dx.doi.org/10.1109/JSTQE.2012.2237386
17.
17. M. P. Nielsen and A. Y. Elezzabi, Opt. Express 21, 20274 (2013).
http://dx.doi.org/10.1364/OE.21.020274
18.
18. S. Zhu, G. Q. Lo, and D. L. Kwong, Appl. Phys. Lett. 99, 031112 (2011).
http://dx.doi.org/10.1063/1.3615306
19.
19. S. Zhu, G. Q. Lo, and D. L. Kwong, IEEE Photonics Technol. Lett. 23, 1896 (2011).
http://dx.doi.org/10.1109/LPT.2011.2171934
20.
20. M. P. Nielsen, A. Ashfar, K. Cadien, and A. Y. Elezzabi, Opt. Mater. 36, 294 (2013).
http://dx.doi.org/10.1016/j.optmat.2013.09.011
21.
21. S. Zhu, G. Q. Lo, and D. L. Kwong, Opt. Express 21, 8320 (2013).
http://dx.doi.org/10.1364/OE.21.008320
22.
22. M.-S. Kwon, Opt. Express 19, 8379 (2011).
http://dx.doi.org/10.1364/OE.19.008379
23.
23. M.-S. Kwon, J.-S. Shin, S.-Y. Shin, and W.-G. Lee, Opt. Express 20, 21875 (2012).
http://dx.doi.org/10.1364/OE.20.021875
24.
24. M.-S. Kwon and J.-S. Shin, Opt. Lett. 39, 715 (2014).
http://dx.doi.org/10.1364/OL.39.000715
25.
25. Y. Fainman, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications ( McGraw-Hil, New York, 2009), p. 59.
26.
26. O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, Opt. Express 21, 698 (2013).
http://dx.doi.org/10.1364/OE.21.000698
27.
27. H. S. Lee, C. Awada, S. Boutami, F. Charra, L. Douillard, and R. E. de Lamaestre, Opt. Express 20, 8974 (2012).
http://dx.doi.org/10.1364/OE.20.008974
28.
28. F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, IEEE Photonics Technol. Lett. 16, 1661 (2004).
http://dx.doi.org/10.1109/LPT.2004.828497
29.
29. S. Calus, D. Rau, P. Huber, and A. V. Kityk, Phys. Rev. E 86, 021701 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.021701
30.
30. J. Pfeifle, L. Alloatti, W. Freude, J. Leuthold, and C. Koos, Opt. Express 20, 15359 (2012).
http://dx.doi.org/10.1364/OE.20.015359
31.
31. D. C. Zografopoulos and R. Beccherelli, J. Opt. 15, 055009 (2013).
http://dx.doi.org/10.1088/2040-8978/15/5/055009
32.
32. Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuhold, K. Neyts, J. Beeckman, and W. Bogaerts, IEEE Photonics Technol. Lett. 27, 1269 (2015).
http://dx.doi.org/10.1109/LPT.2015.2416438
33.
33. D.-P. Cai, S.-C. Nien, H.-K. Chiu, C.-C. Chen, and C. Chieh, Opt. Express 19, 11890 (2011).
http://dx.doi.org/10.1364/OE.19.011890
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/20/10.1063/1.4935984
Loading
/content/aip/journal/apl/107/20/10.1063/1.4935984
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/20/10.1063/1.4935984
2015-11-16
2016-09-28

Abstract

Plasmofluidic waveguides are based on guiding light which is strongly confined in fluid with the assistance of a surface plasmon polariton. To realize plasmofluidic waveguides, metal-insulator-silicon-insulator-metal (MISIM) waveguides, which are hybrid plasmonicwaveguides fabricated using standard complementary metal-oxide-semiconductor technology, are employed. The insulator of the MISIM waveguide is removed to form 30-nm-wide channels, and they are filled with fluid. The plasmofluidic waveguide has a subwavelength-scale mode area since its mode is strongly confined in the fluid. The waveguides are experimentally characterized for different fluids. When the refractive index of the fluid is 1.440, the plasmofluidic waveguide with 190-nm-wide silicon has propagation loss of 0.46 dB/m; the coupling loss between it and an ordinary siliconphotonicwaveguide is 1.79 dB. The propagation and coupling losses may be reduced if a few fabrication-induced imperfections are removed. The plasmofluidic waveguide may pave the way to a dynamically phase-tunable ultracompact device.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/20/1.4935984.html;jsessionid=awvm2GbRoMhAgJbJucWpEOe2.x-aip-live-06?itemId=/content/aip/journal/apl/107/20/10.1063/1.4935984&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/20/10.1063/1.4935984&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/20/10.1063/1.4935984'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,