Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306(5696), 666 (2004).
2. A. K. Geim and K. S. Novoselov, Nat. Mater. 6(3), 183 (2007).
3. F. Schwierz, Nat. Nanotechnol. 5(7), 487 (2010).
4. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4(9), 611 (2010).
5. Yu.-M. Lin, A. Valdes-Garcia, S.-J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, Science 332(6035), 1294 (2011).
6. Y. Wu, K. A. Jenkins, A. Valdes-Garcia, D. B. Farmer, Yu. Zhu, A. A. Bol, C. Dimitrakopoulos, W. Zhu, F. Xia, P. Avouris, and Yu.-M. Lin, Nano Lett. 12(6), 3062 (2012).
7. J. Fan, J. M. Michalik, L. Casado, S. Roddaro, M. R. Ibarra, and J. M. De Teresa, Solid State Commun. 151(21), 1574 (2011).
8. C. W. Jang, Ju. H. Kim, J. M. Kim, D. H. Shin, S. Kim, and S.-Ho. Choi, Nanotechnology 24(40), 405301 (2013).
9. A. A. Sagade, D. Neumaier, D. Schall, M. Otto, A. Pesquera, A. Centeno, A. Z. Elorza, and H. Kurz, Nanoscale 7(8), 3558 (2015).
10. J. Sabio, C. Seoánez, S. Fratini, F. Guinea, A. H. Castro Neto, and F. Sols, Phys. Rev. B 77(19), 195409 (2008).
11. K. Alexandrou, N. Petrone, J. Hone, and I. Kymissis, Appl. Phys. Lett. 106(11), 113104 (2015).
12. H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, ACS Nano 4(12), 7221 (2010).
13. M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, Nano Lett. 10(4), 1149 (2010).
14. Ji. W. Suk, Wi. H. Lee, J. Lee, H. Chou, R. D. Piner, Y. Hao, D. Akinwande, and R. S. Ruoff, Nano Lett. 13(4), 1462 (2013).
15. J. Choi, H. Kim, J. Park, M. W. Iqbal, M. Z. Iqbal, J. Eom, and J. Jung, Curr. Appl. Phys. 14(8), 1045 (2014).
16. S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee, Appl. Phys. Lett. 94(6), 062107 (2009).
17. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett. 9(1), 30 (2009).
18. Y. Xuan, Y. Q. Wu, T. Shen, M. Qi, M. A. Capano, J. A. Cooper, and P. D. Ye, Appl. Phys. Lett. 92(1), 013101 (2008).
19. Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and Po.-W. Chiu, Nano Lett. 12(1), 414 (2012).
20. J. D. Plummer, M. Deal, and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling ( Prentice Hall, Upper Saddle River, NJ, 2000).
21. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324(5932), 1312 (2009).
22. M. S. Fuhrer and J. Hone, Nat. Nanotechnol. 8(3), 146 (2013).
23. J. Xia, F. Chen, J. Li, and N. Tao, Nat. Nanotechnol. 4(8), 505 (2009).
24. Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, Nat. Mater. 10(6), 443 (2011).
25. Y. Zhao, J. Wei, R. Vajtai, P. M. Ajayan, and E. V. Barrera, Sci. Rep. 1, 83 (2011).
26. L. Arsié, S. Esconjauregui, R. Weatherup, Y. Guo, S. Bhardwaj, A. Centeno, A. Zurutuza, C. Cepek, and J. Robertson, Appl. Phys. Lett. 105(10), 103103 (2014).
27. M. Qing-Bo, Li. Ke-Xin, Li. Hong, F. Yu-Zun, Yu. Zhe-Xun, Li. Dong-Mei, L. Yan-Hong, and C. Li-Quan, Chin. Phys. Lett. 25(9), 3482 (2008).
28. B. Brunetti, V. Piacente, and P. Scardala, J. Chem. Eng. Data 55(6), 2164 (2010).
29. P. W. Atkins and J. De Paula, Atkins' Physical Chemistry, 10th ed. ( Oxford University Press, Oxford, 2014).
30. C. G. Low, Q. Zhang, Y. Hao, and R. S. Ruoff, Small 10(20), 4213 (2014).

Data & Media loading...


Article metrics loading...



Research on graphene field-effect transistors (GFETs) has mainly relied on devices fabricated using electron-beam lithography for pattern generation, a method that has known problems with polymer contaminants. GFETs fabricated via photo-lithography suffer even worse from other chemical contaminations, which may lead to strong unintentional doping of the graphene. In this letter, we report on a scalable fabrication process for reliable GFETs based on ordinary photo-lithography by eliminating the aforementioned issues. The key to making this GFET processing compatible with silicon technology lies in a two-in-one process where a gate dielectric is deposited by means of atomic layer deposition. During this deposition step, contaminants, likely unintentionally introduced during the graphene transfer and patterning, are effectively removed. The resulting GFETs exhibit current-voltage characteristics representative to that of intrinsic non-doped graphene. Fundamental aspects pertaining to the surface engineering employed in this work are investigated in the light of chemical analysis in combination with electrical characterization.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd