Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/20/10.1063/1.4936162
1.
1. L. Sang, J. Hu, R. Zou, Y. Koide, and M. Liao, “ Arbitrary multicolor photodetection by hetero-integrated semiconductor nanostructures,” Sci. Rep. 3, 2368 (2013).
http://dx.doi.org/10.1038/srep02368
2.
2. M. Liao, X. Wang, T. Teraji, S. Koizumi, and Y. Koide, “ Light intensity dependence of photocurrent gain in single-crystal diamond detectors,” Phys. Rev. B 81, 033304 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.033304
3.
3. M. Marinelli, E. Milani, G. Prestopino, C. Verona, G. Verona-Rinati, M. Cutroneo, L. Torrisi, D. Margarone, A. Velyhan, J. Krasa, and E. Krousky, “ Analysis of laser-generated plasma ionizing radiation by synthetic single crystal diamond detectors,” Appl. Surf. Sci. 272, 104108 (2013).
http://dx.doi.org/10.1016/j.apsusc.2012.05.142
4.
4. A. BenMoussa, A. Soltani, K. Haenen, U. Kroth, V. Mortet, H. A. Barkad, D. Bolsee, C. Hermans, M. Richter, and J. C. De Jaeger, “ New developments on diamond photodetector for VUV solar observations,” Semicond. Sci. Technol. 23, 035026 (2008).
http://dx.doi.org/10.1088/0268-1242/23/3/035026
5.
5. Y. Koide, M. Liao, and J. Alvarez, “ Thermally stable solar-blind diamond UV photodetector,” Diamond Relat. Mater. 15, 19621966 (2006).
http://dx.doi.org/10.1016/j.diamond.2006.08.009
6.
6. D.-S. Tsai, W.-C. Lien, D.-H. Lien, K.-M. Chen, M.-L. Tsai, D. G. Senesky, Y.-C. Yu, A. P. Pisano, and H. He, “ Solar-blind photodetectors for harsh electronics,” Sci. Rep. 4, 2628 (2013).
http://dx.doi.org/10.1038/srep02628
7.
7. K. J. Pérez Quintero, S. Antipov, A. V. Sumant, C. Jing, and S. V. Baryshev, “ High quantum efficiency ultrananocrystalline diamond photocathode for photoinjector applications,” Appl. Phys. Lett. 105, 123103 (2014).
http://dx.doi.org/10.1063/1.4896418
8.
8. M. Nand Jha, J. Levy, and Y. Gao, “ Advances in remote sensing for oil spill disaster management: State-of-the-art sensors technology for oil spill surveillance,” Sensors 8, 236255 (2008).
http://dx.doi.org/10.3390/s8010236
9.
9. A. De Sio, M. G. Donato, G. Faggio, M. Marinelli, G. Messina, E. Milani, E. Pace, A. Paoletti, A. Pini, S. Santangelo, S. Scuderi, A. Tucciarone, and G. Verona-Rinati, “ Spectral response of large area CVD diamond photoconductors for space applications in the vacuum UV,” Diamond Relat. Mater. 12, 1819 (2003).
http://dx.doi.org/10.1016/S0925-9635(03)00216-4
10.
10. E. Pace and A. D. Sio, “ Diamond detectors for space applications,” Nucl. Instrum. Methods Phys. Res., Sect. A 514, 93 (2003).
http://dx.doi.org/10.1016/j.nima.2003.08.088
11.
11. C. Saguy, R. Kalish, C. Cytermann, Z. Teukam, J. Chevallier, F. Jomard, A. Tromson-Carli, J. E. Butler, and C. Baron, “ n-type diamond with high room temperature electrical conductivity by deuteration of boron doped diamond layers,” Diamond Relat. Mater. 13, 722726 (2004).
http://dx.doi.org/10.1016/j.diamond.2003.10.047
12.
12. V. I. Polyakov, A. I. Rukovishnikov, N. M. Rossukanyi, A. I. Krikunov, V. G. Ralchenko, A. A. Smolin, V. I. Konov, V. P. Varnin, and I. G. Teremetskaya, “ Photodetectors with CVD diamond films: Electrical and photoelectrical properties photoconductive and photodiode structures,” Diamond Relat. Mater. 7, 821 (1998).
http://dx.doi.org/10.1016/S0925-9635(97)00310-5
13.
13. L. Gan, A. Cimmino, S. Prawer, A. Bolker, and R. Kalish, “ Current switching by photo-assisted electron field-emission from diamond surfaces,” Diamond Relat. Mater. 20, 1263 (2011).
http://dx.doi.org/10.1016/j.diamond.2011.08.002
14.
14. F. Cleri, P. Keblinski, L. Colombo, D. Wolf, and S. R. Phillpot, “ On the electrical activity of sp2-bonded grain boundaries in nanocrystalline diamond,” Europhys. Lett. 46, 671677 (1999).
http://dx.doi.org/10.1209/epl/i1999-00318-5
15.
15. M. A. Nitti, M. Colasuonno, E. Nappi, A. Valentini, E. Fanizza, F. Benedic, G. Cicala, E. Milani, and G. Prestopino, “ Performance analysis of poly-,nano- and single-crystalline diamond-based photocathodes,” Nucl. Instrum. Methods Phys. Res., Sect. A 595, 131 (2008).
http://dx.doi.org/10.1016/j.nima.2008.07.062
16.
16. S. Gupta, B. R. weiner, and G. Morell, “ Room temperature electrical conductivity studies of sulfur-modified microcrystalline diamond thin films,” Appl. Phys. Lett. 83, 491 (2003).
http://dx.doi.org/10.1063/1.1591065
17.
17. S. Gupta, B. R. Weiner, and G. Morell, “ Influence of sulfur incorporation on field-emission properties of microcrystalline diamond thin films,” J. Mater. Res. 18, 27082716 (2003).
http://dx.doi.org/10.1557/JMR.2003.0377
18.
18. P. Kulkarni, L. M. Porter, F. A. M. Koeck, Y.-J. Tang, and R. J. Nemanich, “ Electrical and photoelectrical characterization of undoped and S-doped nanocrystalline diamond films,” J. Appl. Phys. 103, 084905 (2008).
http://dx.doi.org/10.1063/1.2908884
19.
19. G. Morell, A. González-Berríos, B. R. Weiner, and S. Gupta, “ Synthesis, structure and field emission properties of sulfur-doped nanocrystalline diamond,” J. Mater. Sci.: Mater. Electron. 17, 443451 (2006).
http://dx.doi.org/10.1007/s10854-006-8090-y
20.
20. F. Mendoza, V. Makarov, A. Hidalgo, B. R. Weiner, and G. Morell, “ Ultraviolet photosensitivity of sulfur-doped micro- and nano-crystalline diamond,” J. Appl. Phys. 109, 114904 (2011).
http://dx.doi.org/10.1063/1.3590153
21.
21. Y. Koide, M. Y. Liao, and M. Imura, “ Mechanism of photoconductivity gain and persistent photoconductivity for diamond photodetector,” Diamond Relat. Mater. 19, 205207 (2010).
http://dx.doi.org/10.1016/j.diamond.2009.08.016
22.
22. K. Uppireddi, A. Gonzalez, F. Piazza, B. R. Weiner, and G. Morell, “ Effects of a nanocomposite carbon buffer layer on the field emission properties of multiwall carbon nanotubes and nanofibers grown by hot filament chemical vapor deposition,” J. Vac. Sci. Technol. B 24, 639 (2006).
http://dx.doi.org/10.1116/1.2174026
23.
23. S. Gupta, B. R. Weiner, and G. Morell, “ Synthesis and characterization of sulfur-incorporated microcrystalline diamond and nanocrystalline carbon thin films by hot filament chemical vapor deposition,” J. Mater. Res. 18, 363 (2003).
http://dx.doi.org/10.1557/JMR.2003.0047
24.
24. S. Almaviva, M. Marinelli, E. Milani, G. Prestopino, A. Tucciarone, C. Verona, G. Verona-Rinati, M. Angelone, and M. Pillon, “ Extreme UV single crystal diamond Schottky photodiode in planar and transverse configuration,” Diamond Relat. Mater. 19, 7882 (2010).
http://dx.doi.org/10.1016/j.diamond.2009.11.007
25.
25. M. Razeghi and A. Rogalski, “ Semiconductor ultraviolet detectors,” J. Appl. Phys. 79, 7433 (1996).
http://dx.doi.org/10.1063/1.362677
26.
26. R. H. Fowler and L. W. Nordheim, “ Electron emission in intense electric fields,” Proc. R. Soc. London, Ser. A 119, 173181 (1928).
http://dx.doi.org/10.1098/rspa.1928.0091
27.
27. A. Modinos, “ Theoretical analysis of field emission data,” Solid State Electron. 45, 809816 (2001).
http://dx.doi.org/10.1016/S0038-1101(00)00218-5
28.
28. K. L. Jensen, Y. Y. Lau, and D. McGrego, “ Photon assisted field emission from a silicon emitter,” Solid-State Electron. 45, 831840 (2001).
http://dx.doi.org/10.1016/S0038-1101(01)00055-7
29.
29. H. Kozak, A. Kromka, E. Ukraintsev, J. Houdkova, M. Ledinsky, M. Vaněček, and B. Rezek, “ Detecting sp2 phase on diamond surfaces by atomic force microscopy phase imaging and its effects on surface conductivity,” Diamond Relat. Mater. 18, 722725 (2009).
http://dx.doi.org/10.1016/j.diamond.2009.02.010
30.
30. T. Miyazaki and H. Okushi, “ A theoretical study of a sulfur impurity in diamond,” Diamond Relat. Mater. 10, 449452 (2001).
http://dx.doi.org/10.1016/S0925-9635(00)00582-3
31.
31. E. Trajkov, S. Prawer, J. E. Butler, and S. M. Hearne, “ Charge trap levels in sulfur-doped chemical-vapor-deposited diamond with applications to ultraviolet dosimetry,” J. Appl. Phys. 98, 023704 (2005).
http://dx.doi.org/10.1063/1.1984079
32.
32. S.-H. Kim, I. T. Han, Y. H. Kim, T.-G. Kim, S. G. Kang, S. H. Lee, S. B. Moon, and D.-G. Kimg, “ Effects of H2 and/or O2 plasma treatments on photoconductivity of freestanding polycrystalline diamond films,” J. Electrochem. Soc. 147, 39353939 (2000).
http://dx.doi.org/10.1149/1.1393999
33.
33. I. L. Krainsky and V. M. Asnin, “ Negative electron affinity mechanism for diamond surfaces,” Appl. Phys. Lett. 72, 2574 (1998).
http://dx.doi.org/10.1063/1.121422
34.
34. P. K. Baumann, S. P. Bozeman, B. L. Ward, and R. J. Nemanich, “ Characterization of metal-diamond interfaces: Electron affinity and Schottky barrier height,” Diamond Relat. Mater. 6, 398402 (1997).
http://dx.doi.org/10.1016/S0925-9635(96)00601-2
35.
35. A. K. Tiwari, J. P. Goss, P. R. Briddon, N. G. Wright, A. B. Horsfall, R. J. H. Pinto, and M. J. Rayson, “ Calculated electron affinity and stability of halogen-terminated diamond,” Phys. Rev. B 84, 245305 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.245305
36.
36. L. Gan, E. Baskin, C. Saguy, and R. Kalish, “ Quantization of 2D hole gas in conductive hydrogenated diamond surfaces observed by electron field emission,” Phys. Rev. Lett. 96, 196808 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.196808
37.
37. R. J. Nemanich, P. K. Baumann, M. C. Benjamin, O.-H. Nam, A. T. Sowers, B. L. Ward, H. Ade, and R. F. Davis, “ Electron emission properties of crystalline diamond and III-nitride surfaces,” Appl. Surf. Sci. 130–132, 694703 (1998).
http://dx.doi.org/10.1016/S0169-4332(98)00140-8
38.
38. J. Robertson and M. J. Rutter, “ Band diagram of diamond and diamond-like carbon surfaces,” Diamond Relat. Mater. 7, 620625 (1998).
http://dx.doi.org/10.1016/S0925-9635(97)00257-4
39.
39.Thorlabs, Specification Sheet 0636-S01, Rev. G, 2 August 2013.
40.
40. A. Gonzalez-Berrıos, D. Huang, N. M. Medina-Emmanuelli, K. E. Kristian, O. O. Ortiz, J. A. Gonzalez, J. De Jesus, I. M. Vargas, B. R. Weiner, and G. Morell, “ Effects of heavy-ions radiation on the electron field emission properties of sulfur-doped nanocomposite carbon films,” Diamond Relat. Mater. 13, 221 (2004).
http://dx.doi.org/10.1016/j.diamond.2003.10.010
41.
41. S. Gupta, B. L. Weiss, B. R. Weiner, L. Pilione, A. Badzian, and G. Morell, “ Electron field emission properties of gamma irradiated microcrystalline diamond and nanocrystalline carbon thin films,” J. Appl. Phys. 92, 3311 (2002).
http://dx.doi.org/10.1063/1.1499996
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/20/10.1063/1.4936162
Loading
/content/aip/journal/apl/107/20/10.1063/1.4936162
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/20/10.1063/1.4936162
2015-11-18
2016-12-10

Abstract

We report our studies on the responsivity of sulfur-doped diamondfilms to ultraviolet radiation using two types of device configurations: the planar configuration with electrodes directly on the diamond surface, and the electron field emission configuration with a bias electrode suspended above the diamond surface. Diamondfilms of different grain sizes were employed: microcrystalline diamond, sub-microcrystalline diamond, and nanocrystalline diamond. The responsivity values of diamondfilms in the field emission configuration reached ∼10 mA/W at around 220 nm, which is ∼40% higher than that of the planar configuration. These responsivity values of diamondfilms are comparable to those of commercially available photodiodes in the wavelength range of 210–300 nm, but with the advantage of being solar blind. The responsivity data were correlated with the bandgap structure of sulfur-doped diamond.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/20/1.4936162.html;jsessionid=gY9ITk7RrgR6aPRWgiexyLFY.x-aip-live-03?itemId=/content/aip/journal/apl/107/20/10.1063/1.4936162&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/20/10.1063/1.4936162&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/20/10.1063/1.4936162'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,