Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. Binnig, C. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
2. J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, Ultrason. Imaging 13, 111 (1991).
3. R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, Science 269, 1854 (1995).
4. M. Fatemi and J. F. Greenleaf, Science 280, 82 (1998).
5. K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, J. Acoust. Soc. Am. 110, 625 (2001).
6. S. A. Kruse, J. A. Smith, A. J. Lawrence, M. A. Dresner, A. Manduca, J. F. Greenleaf, and R. L. Ehman, Phys. Med. Biol. 45, 1579 (2000).
7. L. Sandrin, B. Fourquet, J.-M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi, M. Beaugrand, and R. Palau, Ultrasound Med. Biol. 29, 1705 (2003).
8. J. R. Doherty, G. E. Trahey, K. R. Nightingale, and M. L. Palmeri, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 685 (2013).
9. D. G. Grier, Nature 424, 810 (2003).
10. F. Mosconi, J. F. Allemand, D. Bensimon, and V. Croquette, Phys. Rev. Lett. 102, 078301 (2009).
11. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, Ultrasound Med. Biol. 24, 1419 (1998).
12. M. Friedrich-Rust, K. Wunder, S. Kriener, F. Sotoudeh, S. Richter, J. Bojunga, E. Herrmann, T. Poynard, C. F. Dietrich, J. Vermehren, S. Zeuzem, and C. Sarrazin, Radiology 252, 595 (2009).
13. A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, Radiology 239, 341 (2006).
14. T. N. Erpelding, K. W. Hollman, and M. O'Donnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 52, 971 (2005).
15. C. Acconcia, B. Y. C. Leung, K. Hynynen, and D. E. Goertz, Appl. Phys. Lett. 103, 053701 (2013).
16.See supplementary material at for detailed explanation and multimedia files.[Supplementary Material]
17. J. Bercoff, M. Tanter, and M. Fink, Ultrason. IEEE Trans. Ferroelectr. Freq. Control. 51, 396 (2004).
18. C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, IEEE Trans. Biomed. Eng. 58, 1706 (2011).
19. E. Mikula, K. Hollman, D. Chai, J. V. Jester, and T. Juhasz, Ultrasound Med. Biol. 40, 1671 (2014).
20. N. M. van Popele, D. E. Grobbee, M. L. Bots, R. Asmar, J. Topouchian, R. S. Reneman, A. P. Hoeks, D. A. van der Kuip, A. Hofman, and J. C. Witteman, Stroke 32, 454 (2001).
21. M. Ziol, A. Handra-Luca, A. Kettaneh, C. Christidis, F. Mal, F. Kazemi, V. de Lédinghen, P. Marcellin, D. Dhumeaux, J.-C. Trinchet, and M. Beaugrand, Hepatology 41, 48 (2005).
22. A. Borbély, J. van der Velden, Z. Papp, J. G. F. Bronzwaer, I. Edes, G. J. M. Stienen, and W. J. Paulus, Circulation 111, 774 (2005).
23. S. Suresh, Acta Biomater. 3, 413 (2007).
24. P. Dayton, K. Morgan, A. Klibanov, G. Brandenburger, K. Nightingale, and K. Ferrara, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 1264 (1997).
25. P. A. Dayton, J. S. Allen, and K. W. Ferrara, J. Acoust. Soc. Am. 112, 2183 (2002).
26. Z. Zeravcic, D. Lohse, and W. Van Saarloos, J. Fluid Mech. 680, 114 (2011).
27. S. Chen, M. Fatemi, and J. F. Greenleaf, J. Acoust. Soc. Am. 115, 2781 (2004).
28. Y. C. Fung, B. W. Zweifach, and M. Intaglietta, Circ. Res. 19, 441 (1966).

Data & Media loading...


Article metrics loading...



We propose acoustic particle palpation—the use of sound to press a population of acoustic particles against an interface—as a method for measuring the qualitative and quantitative mechanical properties of materials. We tested the feasibility of this method by emitting ultrasound pulses across a tunnel of an elastic material filled with microbubbles.Ultrasound stimulated the microbubble cloud to move in the direction of wave propagation, press against the distal surface, and cause deformations relevant for elasticitymeasurements. Shear waves propagated away from the palpation site with a velocity that was used to estimate the material's Young's modulus.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd