Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/22/10.1063/1.4936889
1.
1. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. Keeling, F. Marchetti, M. Szymańska, R. Andre, J. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Nature 443, 409414 (2006).
http://dx.doi.org/10.1038/nature05131
2.
2. D. Snoke, Science 298, 13681372 (2002).
http://dx.doi.org/10.1126/science.1078082
3.
3. M. Richard, J. Kasprzak, R. Romestain, R. André, and L. S. Dang, Phys. Rev. Lett. 94, 187401 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.187401
4.
4. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Science 316, 10071010 (2007).
http://dx.doi.org/10.1126/science.1140990
5.
5. G. Nardin, K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, R. André, L. S. Dang, B. Pietka, and B. Deveaud-Plédran, Phys. Rev. Lett. 103, 256402 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.256402
6.
6. D. M. Whittaker and P. R. Eastham, Europhys. Lett. 87, 27002 (2009).
http://dx.doi.org/10.1209/0295-5075/87/27002
7.
7. H. Deng, H. Haug, and Y. Yamamoto, Rev. Mod. Phys. 82, 14891537 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.1489
8.
8. J. Keeling and N. G. Berloff, Contemp. Phys. 52, 131151 (2011).
http://dx.doi.org/10.1080/00107514.2010.550120
9.
9. A. P. D. Love, D. N. Krizhanovskii, D. M. Whittaker, R. Bouchekioua, D. Sanvitto, S. A. Rizeiqi, R. Bradley, M. S. Skolnick, P. R. Eastham, R. André, and L. S. Dang, Phys. Rev. Lett. 101, 067404 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.067404
10.
10. J. Kasprzak, M. Richard, A. Baas, B. Deveaud, R. André, J.-P. Poizat, and L. S. Dang, Phys. Rev. Lett. 100, 067402 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.067402
11.
11. D. Renker and E. Lorenz, J. Instrum. 4, P04004 (2009).
http://dx.doi.org/10.1088/1748-0221/4/04/P04004
12.
12. J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, Nature 460, 245249 (2009).
http://dx.doi.org/10.1038/nature08126
13.
13. M. Aßmann, F. Veit, J.-S. Tempel, T. Berstermann, H. Stolz, M. van der Poel, J. M. Hvam, and M. Bayer, Opt. Express 18, 20229 (2010).
http://dx.doi.org/10.1364/OE.18.020229
14.
14. N. Takemura, J. Omachi, and M. Kuwata-Gonokami, Phys. Rev. A 85, 053811 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.053811
15.
15. B. Silva, A. G. Tudela, C. S. Muñoz, D. Ballarini, G. Gigli, K. W. West, L. Pfeiffer, E. del Valle, D. Sanvitto, and F. P. Laussy, e-print arXiv:1406.0964v2.
16.
16. J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, and M. Bayer, Phys. Rev. B 85, 075318 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.075318
17.
17. M. Aßmann, F. Veit, M. Bayer, M. van Der Poel, and J. M. Hvam, Science 325, 297300 (2009).
http://dx.doi.org/10.1126/science.1174488
18.
18. J. Schmutzler, T. Kazimierczuk, O. Bayraktar, M. Aßmann, M. Bayer, S. Brodbeck, M. Kamp, C. Schneider, and S. Höfling, Phys. Rev. B 89, 115119 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.115119
19.
19. M. Aßmann, F. Veit, M. Bayer, C. Gies, F. Jahnke, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, Phys. Rev. B 81, 165314 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.165314
20.
20. P. Schwendimann and A. Quattropani, Phys. Rev. B 77, 085317 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.085317
21.
21. K. G. Lagoudakis, B. Pietka, M. Wouters, R. André, and B. Deveaud-Plédran, Phys. Rev. Lett. 105, 120403 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.120403
22.
22. K. G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T. C. H. Liew, V. Savona, A. V. Kavokin, R. André, and B. Deveaud-Plédran, Phys. Rev. Lett. 106, 115301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.115301
23.
23. D. N. Krizhanovskii, K. G. Lagoudakis, M. Wouters, B. Pietka, R. A. Bradley, K. Guda, D. M. Whittaker, M. S. Skolnick, B. Deveaud-Plédran, M. Richard, R. André, and L. S. Dang, Phys. Rev. B 80, 045317 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.045317
24.
24. F. Manni, K. G. Lagoudakis, T. C. H. Liew, R. Andr, V. Savona, and B. Deveaud, Nat. Commun. 3, 1309 (2012).
http://dx.doi.org/10.1038/ncomms2310
25.
25. T. W. B. Kibble, J. Phys. A: Math. Gen. 9, 1387 (1976).
http://dx.doi.org/10.1088/0305-4470/9/8/029
26.
26. W. Zurek, Phys. Rep. 276, 177221 (1996).
http://dx.doi.org/10.1016/S0370-1573(96)00009-9
27.
27. F. Manni, Y. Léger, Y. Rubo, R. André, and B. Deveaud, Nat. Commun. 4, 2590 (2013).
http://dx.doi.org/10.1038/ncomms3590
28.
28. A. Baas, K. G. Lagoudakis, M. Richard, R. André, L. S. Dang, and B. Deveaud-Plédran, Phys. Rev. Lett. 100, 170401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.170401
29.
29. T. B. Norris, J.-K. Rhee, C.-Y. Sung, Y. Arakawa, M. Nishioka, and C. Weisbuch, Phys. Rev. B 50, 1466314666 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.14663
30.
30. T. Boulier, M. Bamba, A. Amo, C. Adrados, A. Lemaitre, E. Galopin, I. Sagnes, J. Bloch, C. Ciuti, E. Giacobino et al., Nat. Commun. 5, 3260 (2014).
http://dx.doi.org/10.1038/ncomms4260
31.
31. T. C. H. Liew and V. Savona, Phys. Rev. Lett. 104, 183601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.183601
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/22/10.1063/1.4936889
Loading
/content/aip/journal/apl/107/22/10.1063/1.4936889
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/22/10.1063/1.4936889
2015-12-03
2016-12-07

Abstract

Second-order time correlation measurements with a temporal resolution better than 3 ps were performed on a CdTemicrocavity where spontaneous Bose-Einstein condensation is observed. After the laser pulse, the nonresonantly excited thermal polariton population relaxes into a coherentpolariton condensate. Photon statistics of the light emitted by the microcavity evidences a clear phase transition from the thermal state to a coherent state, which occurs within 3.2 ps after the onset of stimulated scattering. Following this very fast transition, we show that the emission possesses a very high coherence that persists for more than 100 ps after the build-up of the condensate.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/22/1.4936889.html;jsessionid=Kk2g8dJqNpdOKUD7H5rP2-rD.x-aip-live-03?itemId=/content/aip/journal/apl/107/22/10.1063/1.4936889&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/22/10.1063/1.4936889&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/22/10.1063/1.4936889'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,