Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. E. Menard, V. Podzorov, S.-H. Hur, A. Gaur, M. E. Gershenson, and J. A. Rogers, Adv. Mater. 16, 2097 (2004).
2. I. N. Hulea, S. Russo, A. Molinari, and A. F. Morpurgo, Appl. Phys. Lett. 88, 113512 (2006).
3. M. Mas-Torrent, P. Hadley, N. Crivillers, J. Veciana, and C. Rovira, Chem. Phys. Chem. 7, 86 (2006).
4. N. Marjanović, T. B. Singh, G. Dennler, S. Günes, H. Neugebauer, N. Sariciftci, R. Schwödiauer, and S. Bauer, Org. Electron. 7, 188 (2006).
5. J. Labram, P. Wöbkenberg, D. Bradley, and T. Anthopoulos, Org. Electron. 11, 1250 (2010).
6. K. H. Kim, S. Y. Bae, Y. S. Kim, J. A. Hur, M. H. Hoang, T. W. Lee, M. J. Cho, Y. Kim, M. Kim, J.-I. Jin, S.-J. Kim, K. Lee, S. J. Lee, and D. H. Choi, Adv. Mater. 23, 3095 (2011).
7. K.-J. Baeg, M. Binda, D. Natali, M. Caironi, and Y.-Y. Noh, Adv. Mater. 25, 4267 (2013).
8. J. D. Zimmerman, V. V. Diev, K. Hanson, R. R. Lunt, E. K. Yu, M. E. Thompson, and S. R. Forrest, Adv. Mater. 22, 2780 (2010).
9. H. Yu, Z. Bao, and J. H. Oh, Adv. Funct. Mater. 23, 629 (2013).
10. F. Yang, M. Shtein, and S. R. Forrest, Nat. Mater. 4, 37 (2005).
11. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
12. R. M. Pinto, E. M. Maçôas, and H. Alves, J. Mater. Chem. C 2, 3639 (2014).
13.See supplementary material at for details on S1: AFM measurements, S2: contact resistance extraction, and S3: EQE behavior with channel length.[Supplementary Material]
14. R. Laudise, C. Kloc, P. Simpkins, and T. Siegrist, J. Cryst. Growth 187, 449 (1998).
15. H. Alves, R. M. Pinto, and E. S. Maçôas, Nature Commun. 4, 1842 (2013).
16. E. Kuwahara, Y. Kubozono, T. Hosokawa, T. Nagano, K. Masunari, and A. Fujiwara, Appl. Phys. Lett. 85, 4765 (2004).
17. M. Chikamatsu, S. Nagamatsu, Y. Yoshida, K. Saito, K. Yase, and K. Kikuchi, Appl. Phys. Lett. 87, 203504 (2005).
18. S. Z. Bisri, T. Takenobu, T. Takahashi, and Y. Iwasa, Appl. Phys. Lett. 96, 183304 (2010).
19. T. Uemura, M. Yamagishi, Y. Okada, K. Nakayama, M. Yoshizumi, M. Uno, and J. Takeya, Adv. Mater. 22, 3938 (2010).
20. M. Imakawa, K. Sawabe, Y. Yomogida, Y. Iwasa, and T. Takenobu, Appl. Phys. Lett. 99, 233301 (2011).
21. R. de Boer, M. Gershenson, A. Morpurgo, and V. Podzorov, Phys. Status Solidi A 201, 1302 (2004).
22. Y. Xu, R. Gwoziecki, I. Chartier, R. Coppard, F. Balestra, and G. Ghibaudo, Appl. Phys. Lett. 97, 063302 (2010).
23. R. M. Pinto, E. M. S. Macoas, A. I. Neves, S. Raja, C. M. Baleizão, I. C. Santos, and H. Alves, J. Am. Chem. Soc. 137, 7104 (2015).
24. C. Choi, H. Kang, W.-Y. Choi, H. Kim, W. Choi, D. Kim, K. Jang, and K. Seo, IEEE Photonics Technol. Lett. 15, 846 (2003).
25. A. J. Said, D. Recht, J. T. Sullivan, J. M. Warrender, T. Buonassisi, P. D. Persans, and M. J. Aziz, Appl. Phys. Lett. 99, 073503 (2011).
26. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. Koppens, Nat. Nanotechnol. 7, 363 (2012).
27. M. Hiramoto, K. Nakayama, I. Sato, H. Kumaoka, and M. Yokoyama, Thin Solid Films 331, 71 (1998).
28. W. Wang, F. Zhang, L. Li, M. Zhang, Q. An, J. Wang, and Q. Sun, J. Mater. Chem. C 3, 7386 (2015).
29. J. D. Douglas, M. S. Chen, J. R. Niskala, O. P. Lee, A. T. Yiu, E. P. Young, and J. M. Fréchet, Adv. Mater. 26, 4313 (2014).
30. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8, 497 (2013).
31. S. Jeon, S.-E. Ahn, I. Song, C. J. Kim, U.-I. Chung, E. Lee, I. Yoo, A. Nathan, S. Lee, J. Robertson et al., Nat. Mater. 11, 301 (2012).

Data & Media loading...


Article metrics loading...



We report on highly efficient organic phototransistors (OPTs) based on thin-film/single-crystal planar bilayer junctions between 5,6,11,12-tetraphenyltetracene (rubrene) and [6,6]-phenyl-C-butyric acid methyl ester (PCBM). The OPTs show good field-effect characteristics in the dark, with high hole-mobility (4–5 cm2 V−1 s−1), low-contact resistance (20 kΩ cm), and low-operating voltage (≤5 V). Excellent sensing capabilities allow for light detection in the 400–750 nm range, with photocurrent/dark current ratio as high as 4 × 104, responsivity on the order of 20 AW−1 at 27 W cm−2, and an external quantum efficiency of 52 000%. Photocurrent generation is attributed to enhanced electron and hole transfer at the interface between rubrene and PCBM, and fast response times are observed as a consequence of the high-mobility of the interfaces. The optoelectronic properties exhibited in these OPTs outperform those typically provided by a-Si based devices, enabling future applications where multifunctionality in a single-device is sought.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd