Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, and W. J. Parak, Chem. Soc. Rev. 37, 1896 (2008).
2. W. P. Faulk and G. M. Taylor, Immunochemistry 8, 1081 (1971).
3. R. Hermann, P. Walther, and M. Müller, Histochem. Cell Biol. 106(1), 31 (1996).
4. J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, J. Biomed. Opt. 12(3), 034007 (2007).
5. J. Park, A. Estrada, K. Sharp, K. Sang, J. A. Schwartz, D. K. Smith, C. Coleman, J. D. Payne, B. A. Korgel, A. K. Dunn, and J. W. Tunnell, Opt. Express 16(3), 1590 (2008).
6. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, Nano Lett. 7(4), 941 (2007).
7. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, Nano Lett. 5(5), 829 (2005).
8. M. B. Dowling, L. Li, J. Park, G. Kumi, A. Nan, H. Ghandehari, J. T. Fourkas, and P. Deshong, Bioconjugate Chem. 21(11), 1968 (2010).
9. J. Paoli, M. Smedh, A. M. Wennberg, and M. B. Ericson, J. Invest. Dermatol. 128(5), 1248 (2008).
10. E. Dimitrow, M. Ziemer, M. J. Koehler, J. Norgauer, K. Konig, P. Elsner, and M. Kaatz, J. Invest. Dermatol. 129(7), 1752 (2009).
11. A. Bouhelier, M. Beversluis, and L. Novotny, Appl. Phys. Lett. 83(24), 5041 (2003).
12. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, J.-X. Cheng, and Y. R. Shen, Proc. Natl. Acad. Sci. U. S. A. 102(44), 15752 (2005).
13. K. Imura, T. Nagahara, and H. Okamoto, J. Phys. Chem. B 109, 13214 (2005).
14. R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, Nano Lett. 5(6), 1139 (2005).
15. S. Nah, L. Li, and J. T. Fourkas, J. Phys. Chem. A 113(16), 4416 (2009).
16. M. I. Stockman, Science 348(6232), 287 (2015).
17. G. T. Boyd, Z. H. Yu, and Y. R. Shen, Phys. Rev. B 33(12), 7923 (1986).
18. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, Chem. Phys. Lett. 317(6), 517 (2000).
19. K. Imura, T. Nagahara, and H. Okamoto, J. Am. Chem. Soc. 126, 12730 (2004).
20. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Opt. Commun. 220(1–3), 137 (2003).
21. C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, Nat. Biotechnol. 23(6), 741 (2005).
22. Y. Sun and Y. Xia, Anal. Chem. 74(20), 5297 (2002).
23. P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, Nano Lett. 12(6), 2941 (2012).
24. A. Anzalone, M. Gabriel, L. C. Estrada, and E. Gratton, PLoS One 10(4), e0124975 (2015).
25. L. C. Estrada and E. Gratton, ChemPhysChem 13(4), 1087 (2012).
26. I. Fortunati, V. Weber, E. Giorgetti, and C. Ferrante, J. Phys. Chem. C 118(41), 24081 (2014).
27. K. Li and M. Schneider, J. Biomed. Opt. 19(10), 101505 (2014).
28. H. Elwing, S. Welin, A. Askendal, U. Nilsson, and I. Lundström, J. Colloid Interface Sci. 119(1), 203 (1987).
29. A. Lundgren, M. Hulander, J. Brorsson, M. Hermansson, H. Elwing, O. Andersson, B. Liedberg, and M. Berglin, Part. Part. Syst. Charact. 31(2), 209 (2014).
30.See supplementary material at for additional methods, data and discussion.[Supplementary Material]
31. W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, Anal. Chem. 79, 4215 (2007).
32. E. Martinsson, B. Sepulveda, P. Chen, A. Elfwing, B. Liedberg, and D. Aili, Plasmonics 9, 773 (2014).
33. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, Phys. Rev. Lett. 82(12), 2590 (1999).
34. M. R. Beversluis, A. Bouhelier, and L. Novotny, Phys. Rev. B 68(11), 115433 (2003).
35. Y. He, K. Xia, G. Lu, H. Shen, Y. Cheng, Y. C. Liu, K. Shi, Y. F. Xiao, and Q. Gong, Nanoscale 7(2), 577 (2015).
36. J. Huang, W. Wang, C. J. Murphy, and D. G. Cahill, Proc. Natl. Acad. Sci. U. S. A. 111(3), 906 (2014).
37. C. Sönnichsen and A. P. Alivisatos, Nano Lett. 5(2), 301 (2005).
38. T. S. Ahmadi, S. L. Logunov, and M. A. El-Sayed, J. Phys. Chem. 100(20), 8053 (1996).
39. M. Perner, P. Bost, U. Lemmer, G. Von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt, Phys. Rev. Lett. 78(11), 2192 (1997).
40. J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. Luong, J. Phys. Chem. B 108(43), 16864 (2004).
41. S. Link and M. A. El-Sayed, J. Chem. Phys. 114(5), 2362 (2001).
42. P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, Phys. Rev. B 80(4), 045411 (2009).
43. A. Mooradian, Phys. Rev. Lett. 22(5), 185 (1969).
44. H. Eckardt, L. Fritsche, and J. Noffke, J. Phys. F: Met. Phys. 14(1), 97 (1984).
45. P. Biagioni, M. Savoini, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, Phys. Rev. B: Condens. Matter Mater. Phys. 80(15), 153409 (2009).

Data & Media loading...


Article metrics loading...



Goldnanoparticles can be visualized in far-field multiphoton laser-scanning microscopy (MPM) based on the phenomena of multiphoton induced luminescence (MIL). This is of interest for biomedical applications, e.g., for cancer diagnostics, as MPM allows for working in the near-infrared(NIR) optical window of tissue. It is well known that the aggregation of particles causes a redshift of the plasmon resonance, but its implications for MIL applying far-field MPM should be further exploited. Here, we explore MIL from 10 nm goldnanospheres that are chemically deposited on glass substrates in controlled coverage gradients using MPM operating in NIR range. The substrates enable studies of MIL as a function of inter-particle distance and clustering. It was shown that MIL was only detected from areas on the substrates where the particle spacing was less than one particle diameter, or where the particles have aggregated. The results are interpreted in the context that the underlying physical phenomenon of MIL is a sequential two-photon absorption process, where the first event is driven by the plasmon resonance. It is evident that goldnanospheres in this size range have to be closely spaced or clustered to exhibit detectable MIL using far-field MPM operating in the NIR region.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd