Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/23/10.1063/1.4936554
1.
1. R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, and W. J. Parak, Chem. Soc. Rev. 37, 1896 (2008).
http://dx.doi.org/10.1039/b712170a
2.
2. W. P. Faulk and G. M. Taylor, Immunochemistry 8, 1081 (1971).
http://dx.doi.org/10.1016/0019-2791(71)90496-4
3.
3. R. Hermann, P. Walther, and M. Müller, Histochem. Cell Biol. 106(1), 31 (1996).
http://dx.doi.org/10.1007/s004180050021
4.
4. J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, J. Biomed. Opt. 12(3), 034007 (2007).
http://dx.doi.org/10.1117/1.2737351
5.
5. J. Park, A. Estrada, K. Sharp, K. Sang, J. A. Schwartz, D. K. Smith, C. Coleman, J. D. Payne, B. A. Korgel, A. K. Dunn, and J. W. Tunnell, Opt. Express 16(3), 1590 (2008).
http://dx.doi.org/10.1364/OE.16.001590
6.
6. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, Nano Lett. 7(4), 941 (2007).
http://dx.doi.org/10.1021/nl062962v
7.
7. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, Nano Lett. 5(5), 829 (2005).
http://dx.doi.org/10.1021/nl050074e
8.
8. M. B. Dowling, L. Li, J. Park, G. Kumi, A. Nan, H. Ghandehari, J. T. Fourkas, and P. Deshong, Bioconjugate Chem. 21(11), 1968 (2010).
http://dx.doi.org/10.1021/bc100115m
9.
9. J. Paoli, M. Smedh, A. M. Wennberg, and M. B. Ericson, J. Invest. Dermatol. 128(5), 1248 (2008).
http://dx.doi.org/10.1038/sj.jid.5701139
10.
10. E. Dimitrow, M. Ziemer, M. J. Koehler, J. Norgauer, K. Konig, P. Elsner, and M. Kaatz, J. Invest. Dermatol. 129(7), 1752 (2009).
http://dx.doi.org/10.1038/jid.2008.439
11.
11. A. Bouhelier, M. Beversluis, and L. Novotny, Appl. Phys. Lett. 83(24), 5041 (2003).
http://dx.doi.org/10.1063/1.1634383
12.
12. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, J.-X. Cheng, and Y. R. Shen, Proc. Natl. Acad. Sci. U. S. A. 102(44), 15752 (2005).
http://dx.doi.org/10.1073/pnas.0504892102
13.
13. K. Imura, T. Nagahara, and H. Okamoto, J. Phys. Chem. B 109, 13214 (2005).
http://dx.doi.org/10.1021/jp051631o
14.
14. R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, Nano Lett. 5(6), 1139 (2005).
http://dx.doi.org/10.1021/nl050687r
15.
15. S. Nah, L. Li, and J. T. Fourkas, J. Phys. Chem. A 113(16), 4416 (2009).
http://dx.doi.org/10.1021/jp811072r
16.
16. M. I. Stockman, Science 348(6232), 287 (2015).
http://dx.doi.org/10.1126/science.aaa6805
17.
17. G. T. Boyd, Z. H. Yu, and Y. R. Shen, Phys. Rev. B 33(12), 7923 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.7923
18.
18. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, Chem. Phys. Lett. 317(6), 517 (2000).
http://dx.doi.org/10.1016/S0009-2614(99)01414-1
19.
19. K. Imura, T. Nagahara, and H. Okamoto, J. Am. Chem. Soc. 126, 12730 (2004).
http://dx.doi.org/10.1021/ja047836c
20.
20. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Opt. Commun. 220(1–3), 137 (2003).
http://dx.doi.org/10.1016/S0030-4018(03)01357-9
21.
21. C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, Nat. Biotechnol. 23(6), 741 (2005).
http://dx.doi.org/10.1038/nbt1100
22.
22. Y. Sun and Y. Xia, Anal. Chem. 74(20), 5297 (2002).
http://dx.doi.org/10.1021/ac0258352
23.
23. P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, Nano Lett. 12(6), 2941 (2012).
http://dx.doi.org/10.1021/nl300616s
24.
24. A. Anzalone, M. Gabriel, L. C. Estrada, and E. Gratton, PLoS One 10(4), e0124975 (2015).
http://dx.doi.org/10.1371/journal.pone.0124975
25.
25. L. C. Estrada and E. Gratton, ChemPhysChem 13(4), 1087 (2012).
http://dx.doi.org/10.1002/cphc.201100771
26.
26. I. Fortunati, V. Weber, E. Giorgetti, and C. Ferrante, J. Phys. Chem. C 118(41), 24081 (2014).
http://dx.doi.org/10.1021/jp506408j
27.
27. K. Li and M. Schneider, J. Biomed. Opt. 19(10), 101505 (2014).
http://dx.doi.org/10.1117/1.JBO.19.10.101505
28.
28. H. Elwing, S. Welin, A. Askendal, U. Nilsson, and I. Lundström, J. Colloid Interface Sci. 119(1), 203 (1987).
http://dx.doi.org/10.1016/0021-9797(87)90260-8
29.
29. A. Lundgren, M. Hulander, J. Brorsson, M. Hermansson, H. Elwing, O. Andersson, B. Liedberg, and M. Berglin, Part. Part. Syst. Charact. 31(2), 209 (2014).
http://dx.doi.org/10.1002/ppsc.201300154
30.
30.See supplementary material at http://dx.doi.org/10.1063/1.4936554 for additional methods, data and discussion.[Supplementary Material]
31.
31. W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, Anal. Chem. 79, 4215 (2007).
http://dx.doi.org/10.1021/ac0702084
32.
32. E. Martinsson, B. Sepulveda, P. Chen, A. Elfwing, B. Liedberg, and D. Aili, Plasmonics 9, 773 (2014).
http://dx.doi.org/10.1007/s11468-013-9659-y
33.
33. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, Phys. Rev. Lett. 82(12), 2590 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.2590
34.
34. M. R. Beversluis, A. Bouhelier, and L. Novotny, Phys. Rev. B 68(11), 115433 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.115433
35.
35. Y. He, K. Xia, G. Lu, H. Shen, Y. Cheng, Y. C. Liu, K. Shi, Y. F. Xiao, and Q. Gong, Nanoscale 7(2), 577 (2015).
http://dx.doi.org/10.1039/C4NR04879B
36.
36. J. Huang, W. Wang, C. J. Murphy, and D. G. Cahill, Proc. Natl. Acad. Sci. U. S. A. 111(3), 906 (2014).
http://dx.doi.org/10.1073/pnas.1311477111
37.
37. C. Sönnichsen and A. P. Alivisatos, Nano Lett. 5(2), 301 (2005).
http://dx.doi.org/10.1021/nl048089k
38.
38. T. S. Ahmadi, S. L. Logunov, and M. A. El-Sayed, J. Phys. Chem. 100(20), 8053 (1996).
http://dx.doi.org/10.1021/jp960484e
39.
39. M. Perner, P. Bost, U. Lemmer, G. Von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt, Phys. Rev. Lett. 78(11), 2192 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2192
40.
40. J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. Luong, J. Phys. Chem. B 108(43), 16864 (2004).
http://dx.doi.org/10.1021/jp047134+
41.
41. S. Link and M. A. El-Sayed, J. Chem. Phys. 114(5), 2362 (2001).
http://dx.doi.org/10.1063/1.1336140
42.
42. P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, Phys. Rev. B 80(4), 045411 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.045411
43.
43. A. Mooradian, Phys. Rev. Lett. 22(5), 185 (1969).
http://dx.doi.org/10.1103/PhysRevLett.22.185
44.
44. H. Eckardt, L. Fritsche, and J. Noffke, J. Phys. F: Met. Phys. 14(1), 97 (1984).
http://dx.doi.org/10.1088/0305-4608/14/1/013
45.
45. P. Biagioni, M. Savoini, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, Phys. Rev. B: Condens. Matter Mater. Phys. 80(15), 153409 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.153409
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/23/10.1063/1.4936554
Loading
/content/aip/journal/apl/107/23/10.1063/1.4936554
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/23/10.1063/1.4936554
2015-12-08
2016-09-30

Abstract

Goldnanoparticles can be visualized in far-field multiphoton laser-scanning microscopy (MPM) based on the phenomena of multiphoton induced luminescence (MIL). This is of interest for biomedical applications, e.g., for cancer diagnostics, as MPM allows for working in the near-infrared(NIR) optical window of tissue. It is well known that the aggregation of particles causes a redshift of the plasmon resonance, but its implications for MIL applying far-field MPM should be further exploited. Here, we explore MIL from 10 nm goldnanospheres that are chemically deposited on glass substrates in controlled coverage gradients using MPM operating in NIR range. The substrates enable studies of MIL as a function of inter-particle distance and clustering. It was shown that MIL was only detected from areas on the substrates where the particle spacing was less than one particle diameter, or where the particles have aggregated. The results are interpreted in the context that the underlying physical phenomenon of MIL is a sequential two-photon absorption process, where the first event is driven by the plasmon resonance. It is evident that goldnanospheres in this size range have to be closely spaced or clustered to exhibit detectable MIL using far-field MPM operating in the NIR region.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/23/1.4936554.html;jsessionid=we6O8DiWugatdy7dcNldlwbd.x-aip-live-03?itemId=/content/aip/journal/apl/107/23/10.1063/1.4936554&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/23/10.1063/1.4936554&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/23/10.1063/1.4936554'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,