Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. N. C. Greenham, R. H. Friend, and D. D. C. Bradley, Adv. Mater. 6, 491 (1994).
2. G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, Opt. Lett. 22, 396 (1997).
3. W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, Phys. Status Solidi A 210, 44 (2013).
4. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).
5. S. Möller and S. R. Forrest, J. Appl. Phys. 91, 3324 (2002).
6. Y. Sun and S. R. Forrest, Nat. Photonics 2, 483 (2008).
7. H.-W. Chang, J. Lee, S. Hofmann, Y. H. Kim, L. Müller-Meskamp, B. Lüssem, C.-C. Wu, K. Leo, and M. C. Gather, J. Appl. Phys. 113, 204502 (2013).
8. T. Schwab, C. Fuchs, R. Scholz, A. Zakhidov, K. Leo, and M. C. Gather, Opt. Express 22, 7524 (2014).
9. S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, Opt. Express 19, A1250 (2011).
10. Q. Huang, K. Walzer, M. Pfeiffer, V. Lyssenko, G. He, and K. Leo, Appl. Phys. Lett. 88, 113515 (2006).
11. R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, Appl. Phys. Lett. 97, 253305 (2010).
12. S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Lüssem, and K. Leo, Appl. Phys. Lett. 97, 253308 (2010).
13. M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, Nano Lett. 12, 424 (2012).
14. J. Kim, J. Lee, C. Moon, K. Kim, and J. Kim, Org. Electron. 17, 115 (2015).
15. M. C. Gather and S. Reineke, J. Photonics Energy 5, 57607 (2015).
16. S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, Rev. Mod. Phys. 85, 1245 (2013).
17. A. A. Zakhidov, J. K. Lee, H. H. Fong, J. A. DeFranco, M. Chatzichristidi, P. G. Taylor, C. K. Ober, and G. G. Malliaras, Adv. Mater. 20, 3481 (2008).
18. P. G. Taylor, J. K. Lee, A. A. Zakhidov, M. Chatzichristidi, H. H. Fong, J. A. DeFranco, G. G. Malliaras, and C. K. Ober, Adv. Mater. 21, 2314 (2009).
19. P. G. Taylor, J.-K. Lee, A. A. Zakhidov, H. S. Hwang, J. A. DeFranco, H. H. Fong, M. Chatzichristidi, E. Murotani, G. G. Malliaras, and C. K. Ober, Proc. SPIE 7639, 76390Z (2010).
20. A. A. Zakhidov, B. Lüssem, K. Leo, and J. DeFranco, Dig. Tech. Pap. -Soc. Inf. Disp. Int. Symp. 42, 1740 (2011).
21. X. Gong, D. Moses, G. C. Bazan, and A. J. Heeger, Adv. Mater. 17, 2053 (2005).
22. T. Kinkeldei, C. Zysset, N. Münzenrieder, L. Petti, and G. Tröster, Sensors 12, 13681 (2012).
23. J. H. Beck, R. A. Barton, M. P. Cox, K. Alexandrou, N. Petrone, G. Olivieri, S. Yang, J. Hone, and I. Kymissis, Nano Lett. 15, 2555 (2015).
24. S. Krotkus, F. Ventsch, D. Kasemann, A. A. Zakhidov, S. Hofmann, K. Leo, and M. C. Gather, Adv. Opt. Mater. 2, 1043 (2014).
25. T. Schwab, S. Schubert, S. Hofmann, M. Fröbel, C. Fuchs, M. Thomschke, L. Müller-Meskamp, K. Leo, and M. C. Gather, Adv. Opt. Mater. 1, 707 (2013).
26.See for the implementation of the MIE scatting model used here.
27.See supplementary material at for Figs S1–S3, illustrating reproducibility, leakage current, and detailed emission spectra, respectively.[Supplementary Material]
28. T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, and M. C. Gather, Adv. Opt. Mater. 1, 921 (2013).
29. M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, Phys. Rev. B 85, 115205 (2012).

Data & Media loading...


Article metrics loading...



A random scattering approach to enhance light extraction in white top-emitting organic light-emitting diodes(OLEDs) is reported. Through solution processing from fluorinated solvents, a nano-particlescattering layer (NPSL) can be deposited directly on top of small molecule OLEDs without affecting their electrical performance. The scattering length for light inside the NPSL is determined from transmission measurements and found to be in agreement with Mie scattering theory. Furthermore, the dependence of the light outcoupling enhancement on electron transport layer thickness is studied. Depending on the electron transport layer thickness, the NPSL enhances the external quantum efficiency of the investigated white OLEDs by between 1.5 and 2.3-fold. For a device structure that has been optimized prior to application of the NPSL, the maximum external quantum efficiency is improved from 4.7% to 7.4% (1.6-fold improvement). In addition, the scattering layer strongly reduces the undesired shift in emission color with viewing angle.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd