Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. Ito and T. Nakazawa, Jpn. J. Appl. Phys., Part 1 27(11), 20942097 (1988).
2. H. Katagiri, Thin Solid Films 480–481, 426432 (2005).
3. W. Wang, M. Winkler, O. Gunawan, T. Gokmen, T. Todorov, Y. Zhu, and D. Mitzi, Adv. Energy Mater. 4(7), 1301465 (2014).
4. B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, Prog. Photovoltaics 21(1), 7276 (2013).
5. M. Bär, B. Schubert, B. Marsen, R. Wilks, S. Pookpanratana, M. Blum, S. Krause, T. Unold, W. Yang, L. Weinhardt, C. Heske, and H. W. Schock, Appl. Phys. Lett. 99(22), 222105 (2011).
6. C. Hages, N. Carter, R. Agrawal, and T. Unold, J. Appl. Phys. 115(23), 234504 (2014).
7. U. Rau and H. Schock, Appl. Phys. A 69, 131147 (1999).
8. G. Brammertz, M. Buffiere, S. Oueslati, H. ElAnzeery, K. Messaoud, S. Sahayaraj, C. Köble, M. Meuris, and J. Poortmans, Appl. Phys. Lett. 103, 163904 (2013).
9. M. Kapilashrami, C. X. Kronawitter, T. Törndahl, J. Lindahl, A. Hultqvist, W. C. Wang, C. L. Chang, S. S. Mao, and J. H. Guo, Phys. Chem. Chem. Phys. 14(29), 1015410159 (2012).
10. M. Morkel, L. Weinhardt, B. Lohmuller, C. Heske, E. Umbach, W. Riedl, S. Zweigart, and F. Karg, Appl. Phys. Lett. 79(27), 44824484 (2001).
11. J. Lindahl, C. Hagglund, J. T. Watjen, M. Edoff, and T. Törndahl, Thin Solid Films 586, 8287 (2015).
12. J. Lindahl, J. Keller, O. Donzel-Gargand, P. Szaniawski, M. Edoff, and T. Törndahl, Sol. Energy Mater. Sol. Cells 144, 684690 (published online).
13. T. Ericson, T. Kubart, J. J. Scragg, and C. Platzer-Bjorkman, Thin Solid Films 520(24), 70937099 (2012).
14. J. Lindahl, U. Zimmermann, P. Szaniawski, T. Törndahl, A. Hultqvist, P. Salome, C. Platzer-Bjorkman, and M. Edoff, IEEE J. Photovoltaics 3(3), 11001105 (2013).
15. A. Hultqvist, C. Platzer-Bjorkman, U. Zimmermann, M. Edoff, and T. Törndahl, Prog. Photovoltaics 20(7), 883891 (2012).
16. T. Ericson, J. Scragg, A. Hultqvist, T. Wätjen, P. Szaniawski, T. Törndahl, and C. Platzer-Björkman, IEEE J. Photovoltaics 4(1), 465469 (2014).
17. J. Scragg, T. Ericson, X. Fontane, V. Izquierdo-Roca, A. Perez-Rodriguez, T. Kubart, M. Edoff, and C. Platzer-Björkman, Prog. Photovoltaics 22(1), 10 (2014).
18. J. K. Larsen, S. Y. Li, J. J. S. Scragg, Y. Ren, C. Hagglund, M. D. Heinemann, S. Kretzschmar, T. Unold, and C. Platzer-Bjorkman, J. Appl. Phys. 118(3), 035307 (2015).
19. Y. Ren, J. Scragg, C. Frisk, J. Larsen, S.-Y. Li, and C. Platzer-Björkman, “ Influence of the Cu2ZnSnS4 absorber thickness on thin film solar cells,” Phys. Status Solidi A (published online).
20. J. Scragg, J. Larsen, M. Kumar, C. Persson, J. Sendler, S. Siebentritt, and C. Platzer-Björkman, “ Cu-Zn disorder and band gap fluctuations in Cu2ZnSn(S,Se)4: Theoretical and experimental investigations,” Phys. Status Solidi B (published online).

Data & Media loading...


Article metrics loading...



CuZnSnS (CZTS) solar cells typically include a CdSbuffer layer in between the CZTS and ZnO front contact. For sulfide CZTS, with a bandgap around 1.5 eV, the band alignment between CZTS and CdS is not ideal (“cliff-like”), which enhances interface recombination. In this work, we show how a ZnSnO (ZTO) buffer layer can replace CdS, resulting in improved open circuit voltages (V) for CZTS devices. The ZTO is deposited by atomic layer deposition(ALD), with a process previously developed for Cu(In,Ga)Sesolar cells. By varying the ALD process temperature, the position of the conduction band minimum of the ZTO is varied in relation to that of CZTS. A ZTO process at 95 °C is found to give higher V and efficiency as compared with the CdS reference devices. For a ZTO process at 120 °C, where the conduction band alignment is expected to be the same as for CdS, the V and efficiency is similar to the CdS reference. Further increase in conduction band minimum by lowering the deposition temperature to 80 °C shows blocking of forward current and reduced fill factor, consistent with barrier formation at the junction. Temperature-dependent current voltage analysis gives an activation energy for recombination of 1.36 eV for the best ZTO device compared with 0.98 eV for CdS. We argue that the V of the best ZTO devices is limited by bulk recombination, in agreement with a room temperature photoluminescence peak at around 1.3 eV for both devices, while the CdS device is limited by interface recombination.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd