Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/24/10.1063/1.4938006
1.
1. W. C. Röntgen, Nature 53, 274 (1896).
http://dx.doi.org/10.1038/053274b0
2.
2. W. D. Coolidge, Phys. Rev. 2, 409 (1913).
http://dx.doi.org/10.1103/PhysRev.2.409
3.
3. W. P. Dyke and W. W. Dolan, Adv. Electron. Electron Phys. 8, 89 (1956).
http://dx.doi.org/10.1016/S0065-2539(08)61226-3
4.
4. H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi, and F. Okuyama, Appl. Phys. Lett. 78, 2578 (2001).
http://dx.doi.org/10.1063/1.1367278
5.
5. G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu, and O. Zhou, Appl. Phys. Lett. 81, 355 (2002).
http://dx.doi.org/10.1063/1.1492305
6.
6. A. Haga, S. Senda, Y. Sakai, Y. Mizuta, S. Kita, and F. Okuyama, Appl. Phys. Lett. 84, 2208 (2004).
http://dx.doi.org/10.1063/1.1689757
7.
7. S. Senda, Y. Sakai, Y. Mizuta, S. Kita, and F. Okuyama, Appl. Phys. Lett. 85, 5679 (2004).
http://dx.doi.org/10.1063/1.1832733
8.
8. Y. Sakai, A. Haga, S. Sugita, S. Kita, S. I. Tanaka, F. Okuyama, and N. Kobayashi, Rev. Sci. Instrum. 78, 013305 (2007).
http://dx.doi.org/10.1063/1.2430650
9.
9. Y. Cheng, J. Zhang, Y. Z. Lee, B. Gao, S. Dike, W. Lin, J. P. Lu, and O. Zhou, Rev. Sci. Instrum. 75, 3264 (2004).
http://dx.doi.org/10.1063/1.1791313
10.
10. Z. J. Liu, G. Yang, Y. Z. Lee, D. Bordelon, J. P. Lu, and O. Zhou, Appl. Phys. Lett. 89, 103111 (2006).
http://dx.doi.org/10.1063/1.2345829
11.
11. G. Travish, F. J. Rangel, M. A. Evans, B. Hollister, and K. Schmiedehausen, Proc. SPIE 8502, 85020L (2012).
http://dx.doi.org/10.1117/12.929354
12.
12. E. J. Grant, C. M. Posada, C. H. Castano, and H. K. Lee, Proc. SPIE 7961, 796108 (2011).
http://dx.doi.org/10.1117/12.878292
13.
13. C. M. Posada, C. H. Castano, E. J. Grant, and H. K. Lee, J. Vac. Sci. Technol., B 30, 022201 (2012).
http://dx.doi.org/10.1116/1.3680112
14.
14. E. J. Grant, C. M. Posada, C. H. Castano, and H. K. Lee, Appl. Radiat. Isot. 70, 1658 (2012).
http://dx.doi.org/10.1016/j.apradiso.2012.04.011
15.
15. E. J. Grant, C. M. Posada, R. Divan, A. V. Sumant, D. Rosenmann, L. Stan, A. Avachat, C. H. Castano, and H. K. Lee, Proc. SPIE 8709, 87090U (2013).
http://dx.doi.org/10.1117/12.2015846
16.
16. C. M. Posada, E. J. Grant, R. Divan, A. V. Sumant, D. Rosenmann, L. Stan, H. K. Lee, and C. H. Castano, J. Appl. Phys. 115, 134506 (2014).
http://dx.doi.org/10.1063/1.4870928
17.
17. S. A. Getty, O. Auciello, A. V. Sumant, X. P. Wang, D. P. Glavin, and P. R. Mahaffy, Proc. SPIE 7679, 76791N (2010).
http://dx.doi.org/10.1117/12.850585
18.
18. T. Manabe, S. Nitta, S. Abo, F. Wakaya, and M. Takai, J. Vac. Sci. Technol., B 31, 02B110 (2013).
http://dx.doi.org/10.1116/1.4790518
19.
19. S. Okawaki, S. Abo, F. Wakaya, M. Abe, and M. Takai, Jpn. J. Appl. Phys. 54, 06FF10 (2015).
http://dx.doi.org/10.7567/JJAP.54.06FF10
20.
20. S. Ren, Y. F. Bai, J. Chen, S. Z. Deng, N. S. Xu, Q. B. Wu, and S. H. Yang, Mater. Lett. 61, 666 (2007).
http://dx.doi.org/10.1016/j.matlet.2006.05.031
21.
21. X. D. Wang, J. Zhou, C. S. Lao, J. H. Song, N. S. Xu, and Z. L. Wang, Adv. Mater. 19, 1627 (2007).
http://dx.doi.org/10.1002/adma.200602467
22.
22. A. A. Al-Tabbakh, M. A. More, D. S. Joag, I. S. Mulla, and V. K. Pillai, ACS Nano 4, 5585 (2010).
http://dx.doi.org/10.1021/nn1008403
23.
23. C. X. Zhao, Y. F. Li, J. Zhou, L. Y. Li, S. Z. Deng, N. S. Xu, and J. Chen, Cryst. Growth Des. 13, 2897 (2013).
http://dx.doi.org/10.1021/cg400318f
24.
24. K. B. Zheng, H. T. Shen, J. L. Li, D. L. Sun, G. R. Chen, K. Hou, C. Li, and W. Lei, Vacuum 83, 261 (2008).
http://dx.doi.org/10.1016/j.vacuum.2008.07.010
25.
25. L. Wei, X. B. Zhang, B. P. Wang, C. G. Lou, Z. Y. Zhu, Z. W. Zhao, L. Chi, and H. Kai, IEEE Electron Device Lett. 29, 452 (2008).
http://dx.doi.org/10.1109/LED.2008.920465
26.
26. S. Ooki, S. Ohshio, J. Nishino, Y. Ohkawara, H. Ito, and H. Saitoh, Jpn. J. Appl. Phys., Part 1 47, 7303 (2008).
http://dx.doi.org/10.1143/JJAP.47.7303
27.
27. Y. C. Chen, S. Z. Deng, N. S. Xu, and J. Chen, Mater. Res. Express 1, 045050 (2014).
http://dx.doi.org/10.1088/2053-1591/1/4/045050
28.
28. R. H. Fowler and L. Nordheim, Proc. R. Soc. London A 119, 173 (1928).
http://dx.doi.org/10.1098/rspa.1928.0091
29.
29.See supplementary material at http://dx.doi.org/10.1063/1.4938006 for the result of resistance of individual ZnO nanowire and calculation of X-ray divergence angle in our flat-panel X-ray source.[Supplementary Material]
30.
30. N. S. Liu, G. J. Fang, W. Zeng, H. Long, L. Y. Yuan, and X. Z. Zhao, Appl. Phys. Lett. 95, 153505 (2009).
http://dx.doi.org/10.1063/1.3247887
31.
31. N. Liu, Q. Wu, C. He, H. Tao, X. Wang, W. Lei, and Z. Hu, ACS Appl. Mater. Interfaces 1, 1927 (2009).
http://dx.doi.org/10.1021/am9003304
32.
32. S. Cheng, F. A. Hill, E. V. Heubel, and L. F. Velasquez-Garcia, J. Microelectromech. Syst. 24, 373 (2015).
http://dx.doi.org/10.1109/JMEMS.2014.2332176
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/24/10.1063/1.4938006
Loading
/content/aip/journal/apl/107/24/10.1063/1.4938006
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/24/10.1063/1.4938006
2015-12-15
2016-12-10

Abstract

A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnOnanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnOnanowires. Self-ballasting effect induced by the intrinsic resistance of ZnOnanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at a range of 18–20 kV, the latter of which were the dominant X-ray signals. High-resolution X-rayimages with spatial resolution less than 25 m were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/24/1.4938006.html;jsessionid=Yza6eIfNN416qvpBB9qR9Tfo.x-aip-live-06?itemId=/content/aip/journal/apl/107/24/10.1063/1.4938006&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/24/10.1063/1.4938006&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/24/10.1063/1.4938006'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,