Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. W. C. Röntgen, Nature 53, 274 (1896).
2. W. D. Coolidge, Phys. Rev. 2, 409 (1913).
3. W. P. Dyke and W. W. Dolan, Adv. Electron. Electron Phys. 8, 89 (1956).
4. H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi, and F. Okuyama, Appl. Phys. Lett. 78, 2578 (2001).
5. G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu, and O. Zhou, Appl. Phys. Lett. 81, 355 (2002).
6. A. Haga, S. Senda, Y. Sakai, Y. Mizuta, S. Kita, and F. Okuyama, Appl. Phys. Lett. 84, 2208 (2004).
7. S. Senda, Y. Sakai, Y. Mizuta, S. Kita, and F. Okuyama, Appl. Phys. Lett. 85, 5679 (2004).
8. Y. Sakai, A. Haga, S. Sugita, S. Kita, S. I. Tanaka, F. Okuyama, and N. Kobayashi, Rev. Sci. Instrum. 78, 013305 (2007).
9. Y. Cheng, J. Zhang, Y. Z. Lee, B. Gao, S. Dike, W. Lin, J. P. Lu, and O. Zhou, Rev. Sci. Instrum. 75, 3264 (2004).
10. Z. J. Liu, G. Yang, Y. Z. Lee, D. Bordelon, J. P. Lu, and O. Zhou, Appl. Phys. Lett. 89, 103111 (2006).
11. G. Travish, F. J. Rangel, M. A. Evans, B. Hollister, and K. Schmiedehausen, Proc. SPIE 8502, 85020L (2012).
12. E. J. Grant, C. M. Posada, C. H. Castano, and H. K. Lee, Proc. SPIE 7961, 796108 (2011).
13. C. M. Posada, C. H. Castano, E. J. Grant, and H. K. Lee, J. Vac. Sci. Technol., B 30, 022201 (2012).
14. E. J. Grant, C. M. Posada, C. H. Castano, and H. K. Lee, Appl. Radiat. Isot. 70, 1658 (2012).
15. E. J. Grant, C. M. Posada, R. Divan, A. V. Sumant, D. Rosenmann, L. Stan, A. Avachat, C. H. Castano, and H. K. Lee, Proc. SPIE 8709, 87090U (2013).
16. C. M. Posada, E. J. Grant, R. Divan, A. V. Sumant, D. Rosenmann, L. Stan, H. K. Lee, and C. H. Castano, J. Appl. Phys. 115, 134506 (2014).
17. S. A. Getty, O. Auciello, A. V. Sumant, X. P. Wang, D. P. Glavin, and P. R. Mahaffy, Proc. SPIE 7679, 76791N (2010).
18. T. Manabe, S. Nitta, S. Abo, F. Wakaya, and M. Takai, J. Vac. Sci. Technol., B 31, 02B110 (2013).
19. S. Okawaki, S. Abo, F. Wakaya, M. Abe, and M. Takai, Jpn. J. Appl. Phys. 54, 06FF10 (2015).
20. S. Ren, Y. F. Bai, J. Chen, S. Z. Deng, N. S. Xu, Q. B. Wu, and S. H. Yang, Mater. Lett. 61, 666 (2007).
21. X. D. Wang, J. Zhou, C. S. Lao, J. H. Song, N. S. Xu, and Z. L. Wang, Adv. Mater. 19, 1627 (2007).
22. A. A. Al-Tabbakh, M. A. More, D. S. Joag, I. S. Mulla, and V. K. Pillai, ACS Nano 4, 5585 (2010).
23. C. X. Zhao, Y. F. Li, J. Zhou, L. Y. Li, S. Z. Deng, N. S. Xu, and J. Chen, Cryst. Growth Des. 13, 2897 (2013).
24. K. B. Zheng, H. T. Shen, J. L. Li, D. L. Sun, G. R. Chen, K. Hou, C. Li, and W. Lei, Vacuum 83, 261 (2008).
25. L. Wei, X. B. Zhang, B. P. Wang, C. G. Lou, Z. Y. Zhu, Z. W. Zhao, L. Chi, and H. Kai, IEEE Electron Device Lett. 29, 452 (2008).
26. S. Ooki, S. Ohshio, J. Nishino, Y. Ohkawara, H. Ito, and H. Saitoh, Jpn. J. Appl. Phys., Part 1 47, 7303 (2008).
27. Y. C. Chen, S. Z. Deng, N. S. Xu, and J. Chen, Mater. Res. Express 1, 045050 (2014).
28. R. H. Fowler and L. Nordheim, Proc. R. Soc. London A 119, 173 (1928).
29.See supplementary material at for the result of resistance of individual ZnO nanowire and calculation of X-ray divergence angle in our flat-panel X-ray source.[Supplementary Material]
30. N. S. Liu, G. J. Fang, W. Zeng, H. Long, L. Y. Yuan, and X. Z. Zhao, Appl. Phys. Lett. 95, 153505 (2009).
31. N. Liu, Q. Wu, C. He, H. Tao, X. Wang, W. Lei, and Z. Hu, ACS Appl. Mater. Interfaces 1, 1927 (2009).
32. S. Cheng, F. A. Hill, E. V. Heubel, and L. F. Velasquez-Garcia, J. Microelectromech. Syst. 24, 373 (2015).

Data & Media loading...


Article metrics loading...



A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnOnanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnOnanowires. Self-ballasting effect induced by the intrinsic resistance of ZnOnanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at a range of 18–20 kV, the latter of which were the dominant X-ray signals. High-resolution X-rayimages with spatial resolution less than 25 m were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd