Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/24/10.1063/1.4938137
1.
1. Z. Bao and J. Locklin, Organic Field-Effect Transistors ( CRC Press, Boca Raton, 2007).
2.
2. H. Sirringhaus, Adv. Mater. 17, 2411 (2005).
http://dx.doi.org/10.1002/adma.200501152
3.
3. S.-S. Sun and N. S. Sariciftci, Organic Photovoltaics: Mechanism, Materials, and Devices ( CRC Press, Boca Raton, 2005).
4.
4. O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, Nat. Mater. 13, 190 (2014).
http://dx.doi.org/10.1038/nmat3824
5.
5. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaad, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, Nature 401, 685 (1999).
http://dx.doi.org/10.1038/44359
6.
6. I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. MacDonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. McGehee, and M. F. Toney, Nat. Mater. 5, 328 (2006).
http://dx.doi.org/10.1038/nmat1612
7.
7. A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Rev. Mod. Phys. 60, 781 (1988).
http://dx.doi.org/10.1103/RevModPhys.60.781
8.
8. H. Kiess, Conjugated Conducting Polymers ( Springer-Verlag, Berlin Heiderberg, 1992).
9.
9. K. Lee, S. Cho, S. H. Park, A. J. Heeger, C.-W. Lee, and S.-H. Lee, Nature 441, 65 (2006).
http://dx.doi.org/10.1038/nature04705
10.
10. N. Sai, Z. Q. Li, M. C. Martin, D. N. Basov, and M. Di Ventra, Phys. Rev. B 75, 045307 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.045307
11.
11. K. Mizoguchi and S. Kuroda, Handbook of Organic Conductive Molecules and Polymers, edited by H. S. Nalwa ( Wiley, Chichester, 1997), Vol. 3, Chap. 6.
12.
12. M. J. Panzer and C. D. Frisbie, Adv. Funct. Mater. 16, 1051 (2006).
http://dx.doi.org/10.1002/adfm.200600111
13.
13. A. S. Dhoot, J. D. Yuen, M. Heeney, I. McCulloch, D. Moses, and A. J. Heeger, Proc. Natl. Acad. Sci. U.S.A. 103, 11834 (2006).
http://dx.doi.org/10.1073/pnas.0605033103
14.
14. C. Y. Kao, B. Lee, L. S. Wielunski, M. Heeney, I. McCulloch, E. Garfunkel, L. C. Feldman, and V. Podzorov, Adv. Funct. Mater. 19, 1906 (2009).
http://dx.doi.org/10.1002/adfm.200900120
15.
15. S. Wang, M. Ha, M. Manno, C. D. Frisbie, and C. Leighton, Nat. Commun. 3, 1210 (2012).
http://dx.doi.org/10.1038/ncomms2213
16.
16. S. Zanettini, J. F. Dayen, N. Leclerc, M. Venkata Kamalakar, and B. Doudin, Appl. Phys. Lett. 106, 063303 (2015).
http://dx.doi.org/10.1063/1.4908526
17.
17. T. Harada, H. Ito, Y. Ando, S. Watanabe, H. Tanaka, and S. Kuroda, Appl. Phys. Express 8, 021601 (2015).
http://dx.doi.org/10.7567/APEX.8.021601
18.
18. K. Marumoto, Y. Muramatsu, Y. Nagano, T. Iwata, S. Ukai, H. Ito, S. Kuroda, Y. Shimoi, and S. Abe, J. Phys. Soc. Jpn. 74, 3066 (2005).
http://dx.doi.org/10.1143/JPSJ.74.3066
19.
19. K. Marumoto, S. Kuroda, T. Takenobu, and Y. Iwasa, Phys. Rev. Lett. 97, 256603 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.256603
20.
20. S. Watanabe, K. Ito, H. Tanaka, H. Ito, K. Marumoto, and S. Kuroda, Jpn. J. Appl. Phys., Part 2 46, L792 (2007).
http://dx.doi.org/10.1143/JJAP.46.L792
21.
21. H. Tanaka, S. Watanabe, H. Ito, K. Marumoto, and S. Kuroda, Appl. Phys. Lett. 94, 103308 (2009).
http://dx.doi.org/10.1063/1.3100193
22.
22. S. Watanabe, H. Tanaka, S. Kuroda, A. Toda, S. Nagano, T. Seki, A. Kimoto, and J. Abe, Appl. Phys. Lett. 96, 173302 (2010).
http://dx.doi.org/10.1063/1.3421538
23.
23. H. Tanaka, M. Kozuka, S. Watanabe, H. Ito, Y. Shimoi, K. Takimiya, and S. Kuroda, Phys. Rev. B 84, 081306(R) (2011).
http://dx.doi.org/10.1103/PhysRevB.84.081306
24.
24. H. Matsui, D. Kumaki, E. Takahashi, K. Takimiya, S. Tokito, and T. Hasegawa, Phys. Rev. B 85, 035308 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.035308
25.
25. H. Tanaka, M. Hirate, S. Watanabe, K. Kaneko, K. Marumoto, T. Takenobu, Y. Iwasa, and S. Kuroda, Phys. Rev. B 87, 045309 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.045309
26.
26. Y. Kinoshita, H. Tanaka, Y. Shimoi, K. Takimiya, and S. Kuroda, Appl. Phys. Lett. 105, 033301 (2014).
http://dx.doi.org/10.1063/1.4890962
27.
27. H. Tanaka, E. Sawada, K. Azuma, and S. Kuroda, Appl. Phys. Express 8, 051603 (2015).
http://dx.doi.org/10.7567/APEX.8.051603
28.
28. H. Tanaka, M. Hirate, S. Watanabe, and S. Kuroda, Adv. Mater. 26, 2376 (2014).
http://dx.doi.org/10.1002/adma.201304691
29.
29. J. D. Yuen, A. S. Dhoot, E. B. Namdas, N. E. Coates, M. Heeney, I. McCulloch, D. Moses, and A. J. Heeger, J. Am. Chem. Soc. 129, 14367 (2007).
http://dx.doi.org/10.1021/ja0749845
30.
30. J. Lee, L. G. Kaake, J. H. Cho, X.-Y. Zhu, T. P. Lodge, and C. D. Frisbie, J. Phys. Chem. C 113, 8972 (2009).
http://dx.doi.org/10.1021/jp901426e
31.
31. Y. Ando, H. Ito, S. Watanabe, and S. Kuroda, J. Phys. Soc. Jpn. 81, 114721 (2012).
http://dx.doi.org/10.1143/JPSJ.81.114721
32.
32. S. H. Kim, K. Hong, W. Xie, K. H. Lee, S. Zhang, T. P. Lodge, and C. D. Frisbie, Adv. Mater. 25, 1822 (2013).
http://dx.doi.org/10.1002/adma.201202790
33.
33. W. Shi, J. Ye, J. G. Checkelsky, C. Terakura, and Y. Iwasa, Adv. Funct. Mater. 24, 2005 (2014).
http://dx.doi.org/10.1002/adfm.201302954
34.
34. M. Tsuji, Y. Takahashi, Y. Sakurai, Y. Yomogida, T. Takenobu, Y. Iwasa, and K. Marumoto, Appl. Phys. Lett. 102, 133301 (2013).
http://dx.doi.org/10.1063/1.4800550
35.
35. K. Marumoto, M. Tsuji, Y. Yomogida, T. Takenobu, and Y. Iwasa, Jpn. J. Appl. Phys., Part 1 52, 05DC05 (2013).
http://dx.doi.org/10.7567/JJAP.52.05DC05
36.
36. N. Zhao, Y.-Y. Noh, J.-F. Chang, H. Heeney, I. McCulloch, and H. Sirringhaus, Adv. Mater. 21, 3759 (2009).
http://dx.doi.org/10.1002/adma.200900326
37.
37. J. Cornil and J.-L. Brédas, Adv. Mater. 7, 295 (1995).
http://dx.doi.org/10.1002/adma.19950070311
38.
38. Y. Furukawa, J. Phys. Chem. 100, 15644 (1996).
http://dx.doi.org/10.1021/jp960608n
39.
39. J. Yamamoto and Y. Furukawa, J. Phys. Chem. B 119, 4788 (2015).
http://dx.doi.org/10.1021/jp512654b
40.
40. E. Cho, C. Risko, D. Kim, R. Gysel, N. C. Miller, D. W. Breiby, M. D. McGehee, M. F. Toney, R. J. Kline, and J.-L. Brédas, J. Am. Chem. Soc. 134, 6177 (2012).
http://dx.doi.org/10.1021/ja210272z
41.
41. M. Pomerantz, F. H. Dacol, and A. Segmüller, Phys. Rev. Lett. 40, 246 (1978).
http://dx.doi.org/10.1103/PhysRevLett.40.246
42.
42. S. Kuroda, K. Marumoto, H. Kihara, H. Ofuchi, M. Tabuchi, Y. Takeda, A. G. Banshchikov, N. S. Sokolov, and N. L. Yakovlev, Jpn. J. Appl. Phys., Part 2 40, L1151 (2001).
http://dx.doi.org/10.1143/JJAP.40.L1151
43.
43. R. J. Elliott, Phys. Rev. 96, 266 (1954).
http://dx.doi.org/10.1103/PhysRev.96.266
44.
44. F. Beuneu and P. Monod, Phys. Rev. B 18, 2422 (1978).
http://dx.doi.org/10.1103/PhysRevB.18.2422
45.
45. M. J. Nowak, D. Spiegel, S. Hotta, A. J. Heeger, and P. A. Pincus, Macromolecules 22, 2917 (1989).
http://dx.doi.org/10.1021/ma00197a007
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/24/10.1063/1.4938137
Loading
/content/aip/journal/apl/107/24/10.1063/1.4938137
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/24/10.1063/1.4938137
2015-12-18
2016-10-01

Abstract

Electronic state of charge carriers, in particular, in highly doped regions, in thin-film transistors of a semicrystalline conducting polymer poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene), has been studied by using field-induced electron spin resonance(ESR)spectroscopy. By adopting an ionic-liquid gate insulator, a gate-controlled reversible electrochemical hole-doping of the polymer backbone is achieved, as confirmed from the change of the optical absorption spectra. The edge-on molecular orientation in the pristine film is maintained even after the electrochemicaldoping, which is clarified from the angular dependence of the value. As the doping level increases, spin 1/2 polarons transform into spinless bipolarons, which is demonstrated from the spin-charge relation showing a spin concentration peak around 1%, contrasting to the monotonic increase in the charge concentration. At high doping levels, a drastic change in the linewidth anisotropy due to the generation of conduction electrons is observed, indicating the onset of metallic state, which is also supported by the temperature dependence of the spin susceptibility and the ESRlinewidth. Our results suggest that semicrystalline conducting polymers become metallic with retaining their molecular orientational order, when appropriate doping methods are chosen.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/24/1.4938137.html;jsessionid=QXkwsekSwMEWjcWTDROR_pp2.x-aip-live-06?itemId=/content/aip/journal/apl/107/24/10.1063/1.4938137&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/24/10.1063/1.4938137&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/24/10.1063/1.4938137'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,