Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/25/10.1063/1.4936755
1.
1. Y. Zhang, K. Song, J. Meng, and M. L. Minus, ACS Appl. Mater. Interfaces 5, 807 (2013).
http://dx.doi.org/10.1021/am302382m
2.
2. X. Tao, L. Dong, X. Wang, W. Zhang, B. J. Nelson, and X. Li, Adv. Mater. 22, 2055 (2010).
http://dx.doi.org/10.1002/adma.200903071
3.
3. A. Rubio, J. L. Corkill, and M. L. Cohen, Phys. Rev. B 49, 5081 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.5081
4.
4. N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Science 269, 966 (1995).
http://dx.doi.org/10.1126/science.269.5226.966
5.
5. C. Zhi, Y. Bando, T. Terao, C. Tang, H. Kuwahara, and D. Golberg, Adv. Funct. Mater. 19, 1857 (2009).
http://dx.doi.org/10.1002/adfm.200801435
6.
6. X. Wei, M.-S. Wang, Y. Bando, and D. Golberg, Adv. Mater. 22, 4895 (2010).
http://dx.doi.org/10.1002/adma.201001829
7.
7. N. G. Chopra and A. Zettl, Solid State Commun. 105, 297 (1998).
http://dx.doi.org/10.1016/S0038-1098(97)10125-9
8.
8. R. Arenal, M.-S. Wang, Z. Xu, A. Loiseau, and D. Golberg, Nanotechnology 22, 265704 (2011).
http://dx.doi.org/10.1088/0957-4484/22/26/265704
9.
9. E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Phys. Rev. Lett. 80, 4502 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4502
10.
10. H. M. Ghassemi, C. H. Lee, Y. K. Yap, and R. S. Yassar, J. Appl. Phys. 108, 024314 (2010).
http://dx.doi.org/10.1063/1.3456083
11.
11. D.-M. Tang, C.-L. Ren, X. Wei, M.-S. Wang, C. Liu, Y. Bando, and D. Golberg, ACS Nano 5, 7362 (2011).
http://dx.doi.org/10.1021/nn202283a
12.
12. A. P. Suryavanshi, M.-F. Yu, J. Wen, C. Tang, and Y. Bando, Appl. Phys. Lett. 84, 2527 (2004).
http://dx.doi.org/10.1063/1.1691189
13.
13. D. Golberg, P. M. F. J. Costa, O. Lourie, M. Mitome, X. Bai, K. Kurashima, C. Zhi, C. Tang, and Y. Bando, Nano Lett. 7, 2146 (2007).
http://dx.doi.org/10.1021/nl070863r
14.
14. Y. Zhao, X. Chen, C. Park, C. C. Fay, S. Stupkiewicz, and C. Ke, J. Appl. Phys. 115, 164305 (2014).
http://dx.doi.org/10.1063/1.4872238
15.
15. M. Zheng, X. Chen, C. Park, C. C. Fay, N. M. Pugno, and C. Ke, Nanotechnology 24, 505719 (2013).
http://dx.doi.org/10.1088/0957-4484/24/50/505719
16.
16. M. L. Cohen and A. Zettl, Phys. Today 63(11), 34 (2010).
http://dx.doi.org/10.1063/1.3518210
17.
17. X. Chen, M. Zheng, C. Park, and C. Ke, Small 9, 3345 (2013).
http://dx.doi.org/10.1002/smll.201202771
18.
18. X. Chen, L. Zhang, M. Zheng, C. Park, X. Wang, and C. Ke, Carbon 82, 214 (2015).
http://dx.doi.org/10.1016/j.carbon.2014.10.065
19.
19. M. W. Smith, K. C. Jordan, C. Park, J.-W. Kim, P. T. Lillehei, R. Crooks, and J. S. Harrison, Nanotechnology 20, 505604 (2009).
http://dx.doi.org/10.1088/0957-4484/20/50/505604
20.
20. A. L. Tiano, C. Park, J. W. Lee, H. H. Luong, L. J. Gibbons, S.-H. Chu, S. Applin, P. Gnoffo, S. Lowther, H. J. Kim, P. M. Danehy, J. A. Inman, S. B. Jones, J. H. Kang, G. Sauti, S. A. Thibeault, V. Yamakov, K. E. Wise, J. Su, and C. C. Fay, in Nanosensors Biosensors, and Info-Tech Sensors and Systems 2014 ( San Diego, California, USA, 2014), pp. 119.
21.
21. M. Zheng, X. Chen, I.-T. Bae, C. Ke, C. Park, M. W. Smith, and K. Jordan, Small 8, 116 (2012).
http://dx.doi.org/10.1002/smll.201100946
22.
22. M. Zheng, C. Ke, I.-T. Bae, C. Park, M. W. Smith, and K. Jordan, Nanotechnology 23, 095703 (2012).
http://dx.doi.org/10.1088/0957-4484/23/9/095703
23.
23. C. H. Ke, N. Pugno, B. Peng, and H. D. Espinosa, J. Mech. Phys. Solids 53, 1314 (2005).
http://dx.doi.org/10.1016/j.jmps.2005.01.007
24.
24. A. H. Barber, S. R. Cohen, A. Eitan, L. S. Schadler, and H. D. Wagner, Adv. Mater. 18, 83 (2006).
http://dx.doi.org/10.1002/adma.200501033
25.
25. P. S. Chua and M. R. Piggott, Compos. Sci. Technol. 22, 33 (1985).
http://dx.doi.org/10.1016/0266-3538(85)90089-2
26.
26. H. L. Cox, Br. J. Appl. Phys. 3, 72 (1952).
http://dx.doi.org/10.1088/0508-3443/3/3/302
27.
27. K. R. Jiang and L. S. Penn, Compos. Sci. Technol. 45, 89 (1992).
http://dx.doi.org/10.1016/0266-3538(92)90031-W
28.
28. J. Zeng, B. Saltysiak, W. S. Johnson, D. A. Schiraldi, and S. Kumar, Compos. Part B Eng. 35, 173 (2004).
http://dx.doi.org/10.1016/S1359-8368(03)00051-9
29.
29.Epon Resin Structural Reference Manual (Resolution Performance Products LLC, 2001).
30.
30. C. May, Epoxy Resins: Chemistry and Technology, 2nd ed. ( Marcel Dekker, 1988).
31.
31. T. Ozkan, Q. Chen, and I. Chasiotis, Compos. Sci. Technol. 72, 965 (2012).
http://dx.doi.org/10.1016/j.compscitech.2012.03.004
32.
32. Y. Ganesan, C. Peng, Y. Lu, P. E. Loya, P. Moloney, E. Barrera, B. I. Yakobson, J. M. Tour, R. Ballarini, and J. Lou, ACS Appl. Mater. Interfaces 3, 129 (2011).
http://dx.doi.org/10.1021/am1011047
33.
33. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).
http://dx.doi.org/10.1021/ja9621760
34.
34. J. H. Lee, J. Korean Phys. Soc. 49, 172 (2006).
35.
35. D. Baowan and J. M. Hill, Micro Nano Lett. 2, 46 (2007).
http://dx.doi.org/10.1049/mnl:20070041
36.
36. M. Neek-Amal and F. M. Peeters, Appl. Phys. Lett. 104, 041909 (2014).
http://dx.doi.org/10.1063/1.4863661
37.
37. A. T. Nasrabadi and M. Foroutan, J. Phys. Chem. B 114, 15429 (2010).
http://dx.doi.org/10.1021/jp106330c
38.
38. C. Y. Won and N. R. Aluru, J. Phys. Chem. C 112, 1812 (2008).
http://dx.doi.org/10.1021/jp076747u
39.
39. W.-K. Kim and L. M. Hayden, J. Chem. Phys. 111, 5212 (1999).
http://dx.doi.org/10.1063/1.479776
40.
40. A. Shokuhfar and B. Arab, J. Mol. Model. 19, 3719 (2013).
http://dx.doi.org/10.1007/s00894-013-1906-9
41.
41. J. Q. Liu, T. Xiao, K. Liao, and P. Wu, Nanotechnology 18, 165701 (2007).
http://dx.doi.org/10.1088/0957-4484/18/16/165701
42.
42. P. H. Lin and R. Khare, Macromolecules 42, 4319 (2009).
http://dx.doi.org/10.1021/ma9004007
43.
43.See supplementary material at http://dx.doi.org/10.1063/1.4936755 for details about the sample characterization and the electrical charge distributions on monomers.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/25/10.1063/1.4936755
Loading
/content/aip/journal/apl/107/25/10.1063/1.4936755
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/25/10.1063/1.4936755
2015-12-22
2016-07-30

Abstract

We investigate the mechanical strength of boron nitride nanotube (BNNT) polymerinterfaces by using electron microscopy nanomechanical single-tube pull-out techniques. The nanomechanical measurements show that the shear strengths of BNNT-epoxy and BNNT-poly(methyl methacrylate) interfaces reach 323 and 219 MPa, respectively. Molecular dynamics simulations reveal that the superior load transfer capacity of BNNT-polymer interfaces is ascribed to both the strong van der Waals interactions and Coulomb interactions on BNNT-polymer interfaces. The findings of the extraordinary mechanical strength of BNNT-polymer interfaces suggest that BNNTs are excellent reinforcing nanofiller materials for light-weight and high-strength polymernanocomposites.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/25/1.4936755.html;jsessionid=2aQXrda6QqZsudPPOuwkIj0c.x-aip-live-06?itemId=/content/aip/journal/apl/107/25/10.1063/1.4936755&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/25/10.1063/1.4936755&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/25/10.1063/1.4936755'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,