Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, and H. Shtrikman, “ An electronic mach-zehnder interferometer,” Nature 422(6930), 415418 (2003).
2. A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “ Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett. 11(6), 23962399 (2011).
3. T. Taychatanapat, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, “ Electrically tunable transverse magnetic focusing in graphene,” Nat. Phys. 9, 225229 (2013).
4. V. E. Calado, S.-E. Zhu, S. Goswami, Q. Xu, K. Watanabe, T. Taniguchi, G. C. A. M. Janssen, and L. M. K. Vandersypen, “ Ballistic transport in graphene grown by chemical vapor deposition,” Appl. Phys. Lett. 104(2), 023103 (2014).
5. A. F. Young and P. Kim, “ Quantum interference and Klein tunnelling in graphene heterojunctions,” Nat. Phys. 5, 222226 (2009).
6. P. Rickhaus, R. Maurand, M.-H. Liu, M. Weiss, K. Richter, and C. Schönenberger, “ Ballistic interferences in suspended graphene,” Nat. Commun. 4, 2342 (2013).
7. A. L. Grushina, D.-H. Ki, and A. F. Morpurgo, “ A ballistic pn junction in suspended graphene with split bottom gates,” Appl. Phys. Lett. 102, 223102 (2013).
8. A. Varlet, M.-H. Liu, V. Krueckl, D. Bischoff, P. Simonet, K. Watanabe, T. Taniguchi, K. Richter, K. Ensslin, and T. Ihn, “ Fabry-pérot interference in gapped bilayer graphene with broken anti-Klein tunneling,” Phys. Rev. Lett. 113, 116601 (2014).
9. L. C. Campos, A. F. Young, K. Surakitbovorn, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, “ Quantum and classical confinement of resonant states in a trilayer graphene Fabry-Perot interferometer,” Nat. Commun. 3, 1239 (2012).
10. J. R. Williams, Tony Low, M. S. Lundstrom, and C. M. Marcus, “ Gate-controlled guiding of electrons in graphene,” Nat. Nanotechnol. 6, 222225 (2011).
11. P. Rickhaus, M.-H. Liu, P. Makk, R. Maurand, S. Hess, S. Zihlmann, M. Weiss, K. Richter, and C. Schönenberger, “Guiding of electrons in a few-mode ballistic graphene channel,” Nano Lett. 15, 58195825 (2015).
12. P. Rickhaus, P. Makk, M.-H. Liu, E. Tóvári, M. Weiss, R. Maurand, K. Richter, and C. Schönenberger, “ Snake trajectories in ultraclean graphene p-n junctions,” Nat. Commun. 6, 6470 (2015).
13. T. Taychatanapat, J. Y. Tan, Y. Yeo, K. Watanabe, T. Taniguchi, and B. Özyilmaz, “ Conductance oscillations induced by ballistic snake states in a graphene heterojunction,” Nat. Commun. 6, 6093 (2015).
14. V. E. Calado, S. Goswami, G. Nanda, M. Diez, A. R. Akhmerov, K. Watanabe, T. Taniguchi, T. M. Klapwijk, and L. M. K. Vandersypen, “ Ballistic Josephson junctions in edge-contacted graphene,” Nat. Nanotechnol. 10, 761 (2015).
15. M. T. Allen, O. Shtanko, I. C. Fulga, J. I.-J. Wang, D. Nurgaliev, K. Watanabe, T. Taniguchi, A. R. Akhmerov, P. Jarillo-Herrero, L. S. Levitov, and A. Yacoby, “ Visualization of phase-coherent electron interference in a ballistic graphene josephson junction,” e-print arXiv:1506.06734.
16. M. Ben Shalom, M. J. Zhu, V. I. Fal'ko, A. Mishchenko, A. V. Kretinin, K. S. Novoselov, C. R. Woods, K. Watanabe, T. Taniguchi, A. K. Geim, and J. R. Prance, “ Proximity superconductivity in ballistic graphene, from Fabry-Perot oscillations to random Andreev states in magnetic field,” e-print arXiv:1504.03286.
17. S. Sutar, E. S. Comfort, J. Liu, T. Taniguchi, K. Watanabe, and J. U. Lee, “ Angle-dependent carrier transmission in graphene p-n junctions,” Nano Lett. 12(9), 44604464 (2012).
18. Redwan N. Sajjad, S. Sutar, J. U. Lee, and A. W. Ghosh, “ Manifestation of chiral tunneling at a tilted graphene p-n junction,” Phys. Rev. B 86, 155412 (2012).
19. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, “ Chiral tunnelling and the Klein paradox in graphene,” Nat. Phys. 2, 620625 (2006).
20. M.-H. Liu, J. Bundesmann, and K. Richter, “ Spin-dependent Klein tunneling in graphene: Role of Rashba spin-orbit coupling,” Phys. Rev. B 85, 085406 (2012).
21. N. Tombros, A. Veligura, J. Junesch, J. J. van den Berg, P. J. Zomer, I. J. Vera-Marun, H. T. Jonkman, and B. van Wees, “ Large yield production of high mobility freely suspended graphene electronic devices on a polydimethylglutarimide based organic polymer,” J. Appl. Phys. 109, 093702 (2011).
22. R. Maurand, P. Rickhaus, P. Makk, S. Hess, E. Tovari, C. Handschin, M. Weiss, and C. Schoenberger, “ Fabrication of ballistic suspended graphene with local-gating,” Carbon 79, 486 (2014).
23.See supplementary material at for detailed conductance maps for injection from left electrode in zero and small magnetic fields.[Supplementary Material]
24. F. Freitag, M. Weiss, R. Maurand, J. Trbovic, and C. Schönenberger, “ Homogeneity of bilayer graphene,” Solid State Commun. 152(22), 20532057 (2012).
25. V. V. Cheianov and V. I. Falko, “ Selective transmission of dirac electrons and ballistic magnetoresistance of n-p junctions in graphene,” Phys. Rev. B 74, 041403(R) (2006).
26. H. van Houten, B. J. van Wees, J. E. Mooij, C. W. J. Beenakker, J. G. Williamson, and C. T. Foxon, “ Coherent electron focussing in a two-dimensional electron gas,” Europhys. Lett. 5(8), 721 (1988).
27. S. P. Milovanović, M. Ramezani Masir, and F. M. Peeters, “ Bilayer graphene hall bar with a pn-junction,” J. Appl. Phys. 114(11), 113706 (2013).
28. M.-H. Liu, P. Rickhaus, P. Makk, E. Tóvári, R. Maurand, F. Tkatschenko, M. Weiss, C. Schönenberger, and K. Richter, “ Scalable tight-binding model for graphene,” Phys. Rev. Lett. 114, 036601 (2015).

Data & Media loading...


Article metrics loading...



We present a beam splitter in a suspended, ballistic, multiterminal, bilayer graphene device. By using local bottomgates, a p-n interface tilted with respect to the current direction can be formed. We show that the p-n interface acts as a semi-transparent mirror in the bipolar regime and that the reflectance and transmittance of the p-n interface can be tuned by the gate voltages. Moreover, by studying the conductance features appearing in magnetic field, we demonstrate that the position of the p-n interface can be moved by 1 m. The herein presented beamsplitter device can form the basis of electron-optic interferometers in graphene.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd