Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/25/10.1063/1.4938570
1.
1. Z. Cheng and J. Lin, CrystEngComm 12, 2646 (2010).
http://dx.doi.org/10.1039/c001929a
2.
2. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
http://dx.doi.org/10.1126/science.1228604
3.
3. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Nano Lett. 13, 1764 (2013).
http://dx.doi.org/10.1021/nl400349b
4.
4. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, Nat. Photonics 7, 486 (2013).
http://dx.doi.org/10.1038/nphoton.2013.80
5.
5. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).
http://dx.doi.org/10.1021/ja809598r
6.
6. L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, J. Am. Chem. Soc. 134, 17396 (2012).
http://dx.doi.org/10.1021/ja307789s
7.
7. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, Sci. Rep. 2, 591 (2012).
http://dx.doi.org/10.1038/srep00591
8.
8. J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan, and S. Yang, Nanoscale 5, 3245 (2013).
http://dx.doi.org/10.1039/c3nr00218g
9.
9. H.-S. Kim, J.-W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Grätzel, and N.-G. Park, Nano Lett. 13, 2412 (2013).
http://dx.doi.org/10.1021/nl400286w
10.
10. A. Abrusci, S. D. Stranks, P. Docampo, H.-L. Yip, A. K.-Y. Jen, and H. J. Snaith, Nano Lett. 13, 3124 (2013).
http://dx.doi.org/10.1021/nl401044q
11.
11. B. Cai, Y. Xing, Z. Yang, W.-H. Zhang, and J. Qiu, Energy Environ. Sci. 6, 1480 (2013).
http://dx.doi.org/10.1039/c3ee40343b
12.
12. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature 499, 316 (2013).
http://dx.doi.org/10.1038/nature12340
13.
13. M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013).
http://dx.doi.org/10.1038/nature12509
14.
14. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, Adv. Funct. Mater. 24, 151 (2014).
http://dx.doi.org/10.1002/adfm.201302090
15.
15. E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel, and F. D. Angelis, J. Phys. Chem. C 117, 13902 (2013).
http://dx.doi.org/10.1021/jp4048659
16.
16. U. B. Cappel, T. Daeneke, and U. Bach, Nano Lett. 12, 4925 (2012).
http://dx.doi.org/10.1021/nl302509q
17.
17. H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science 345, 542 (2014).
http://dx.doi.org/10.1126/science.1254050
18.
18. P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, Nat. Commun. 4, 2761 (2013).
http://dx.doi.org/10.1038/ncomms3761
19.
19. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, and Y. M. Lam, Energy Environ. Sci. 7, 399 (2014).
http://dx.doi.org/10.1039/C3EE43161D
20.
20. M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix, and N. Mathews, Chem. Commun. 49, 11089 (2013).
http://dx.doi.org/10.1039/c3cc46534a
21.
21. Y.-F. Chiang, J.-Y. Jeng, M.-H. Lee, S.-R. Peng, P. Chen, T.-F. Guo, T.-C. Wen, Y.-J. Hsu, and C.-M. Hsu, Phys. Chem. Chem. Phys. 16, 6033 (2014).
http://dx.doi.org/10.1039/c4cp00298a
22.
22. D. Liu, M. K. Gangishetty, and T. L. Kelly, J. Mater. Chem. A 2, 19873 (2014).
http://dx.doi.org/10.1039/C4TA02637C
23.
23. D. Liu and T. L. Kelly, Nat. Photonics 8, 133 (2014).
http://dx.doi.org/10.1038/nphoton.2013.342
24.
24. K. Mahmood, B. S. Swain, and A. Amassian, Nanoscale 6, 14674 (2014).
http://dx.doi.org/10.1039/C4NR04383A
25.
25. J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xu, J. Luo, J. Xu, D. Li, Y. Luo, and Q. Meng, Chem. Commun. 50, 13381 (2014).
http://dx.doi.org/10.1039/C4CC04908J
26.
26. J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, ACS Nano 8, 1674 (2014).
http://dx.doi.org/10.1021/nn406020d
27.
27. H. Zhou, Y. Shi, K. Wang, Q. Dong, X. Bai, Y. Xing, Y. Du, and T. Ma, J. Phys. Chem. C 119, 4600 (2015).
http://dx.doi.org/10.1021/jp512101d
28.
28. J. Zhang, P. Barboux, and T. Pauporté, Adv. Energy Mater. 4, 1400932 (2014).
http://dx.doi.org/10.1002/aenm.201400932
29.
29. Z. L. Wang, J. Phys.: Condens. Matter 16, R829 (2004).
http://dx.doi.org/10.1088/0953-8984/16/25/R01
30.
30. O. Lupan, V. M. Guérin, I. M. Tiginyanu, V. V. Ursaki, L. Chow, H. Heinrich, and T. Pauporté, J. Photochem. Photobiol., A 211, 65 (2010).
http://dx.doi.org/10.1016/j.jphotochem.2010.02.004
31.
31. C. Magne, T. Moehl, M. Urien, M. Grätzel, and T. Pauporté, J. Mater. Chem. A 1, 2079 (2013).
http://dx.doi.org/10.1039/C2TA00674J
32.
32. K. Mahmood, R. Munir, B. S. Swain, G.-S. Han, B.-J. Kim, and H. S. Jung, RSC Adv. 4, 9072 (2014).
http://dx.doi.org/10.1039/c3ra46394j
33.
33. J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, and T.-C. Wen, Adv. Mater. 25, 3727 (2013).
http://dx.doi.org/10.1002/adma.201301327
34.
34. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Science 342, 344 (2013).
http://dx.doi.org/10.1126/science.1243167
35.
35. E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R. Bowring, T. Heumüller, M. G. Christoforod, and M. D. McGehee, Energy Environ. Sci. 7, 3690 (2014).
http://dx.doi.org/10.1039/C4EE02465F
36.
36. J. A. Christians, J. S. Manser, and P. V. Kamat, J. Phys. Chem. Lett. 6, 852 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00289
37.
37. W. Tress, N. Marinova, T. Moehl, S. M. Zakeeruddin, M. K. Nazeeruddina, and M. Grätzel, Energy Environ. Sci. 8, 995 (2015).
http://dx.doi.org/10.1039/C4EE03664F
38.
38. A. Abate, S. Paek, F. Giordano, J.-P. Correa-Baena, M. Saliba, P. Gao, T. Matsui, J. Ko, S. M. Zakeeruddin, K. H. Dahmen, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin, Energy Environ. Sci. 8, 2946 (2015).
http://dx.doi.org/10.1039/C5EE02014J
39.
39. K. Wojciechowski, S. D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala, N. Kopidakis, G. Rumbles, C.-Z. Li, R. H. Friend, A. K.-Y. Jen, and H. J. Snaith, ACS Nano 8, 12701 (2014).
http://dx.doi.org/10.1021/nn505723h
40.
40. K. Wojciechowski, T. Leijtens, S. Siprova, C. Schlueter, M. T. Hörantner, J. T.-W. Wang, C.-Z. Li, A. K.-Y. Jen, T.-L. Lee, and H. J. Snaith, J. Phys. Chem. Lett. 6, 2399 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00902
41.
41. W. Ke, D. Zhao, C. R. Grice, A. J. Cimaroli, J. Ge, H. Tao, H. Lei, G. Fang, and Y. Yan, J. Mater. Chem. A 3, 17971 (2015).
http://dx.doi.org/10.1039/C5TA04313A
42.
42. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, Nat. Commun. 5, 5784 (2014).
http://dx.doi.org/10.1038/ncomms6784
43.
43. A. H. Jayatissa, A. Nadarajah, and A. K. Dutta, in Nanofabrication: Technologies, Devices, and Applications II 2005: International Conference on Nanofabrication, Boston, Massachusetts, USA, 23–25 October 2005, edited by Warren Y.-C. Lai, L. E. Ocola, and S. Pau, pp. 60021A160021A7.
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/25/10.1063/1.4938570
Loading
/content/aip/journal/apl/107/25/10.1063/1.4938570
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/25/10.1063/1.4938570
2015-12-24
2016-09-28

Abstract

We have demonstrated the performance of inverted CHNHPbI perovskite-based solar cells (SCs) with a room temperature (RT) sputteredZnO electron transport layer by adding fullerene (C) interlayer. ZnO exhibits a better matched conduction band level with perovskite and Al work function and around energy offset of 2.2 eV between highest occupied molecular orbital level of CHNHPbIperovskite and valance band level of ZnO. However, the CHNHPbIperovskite layer will be damaged during direct RT sputteringdeposition of ZnO. Therefore, the C interlayer having matched conduction band level with ZnO and CHNHPbIperovskite added between the CHNHPbIperovskite and RT sputteredZnO layers for protection prevents sputtering damages on the CHNHPbIperovskite layer. The short-circuit current density (, 19.41 mA/cm2) and open circuit voltage (, 0.91 V) of the SCs with glass/ITO/poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS)/perovskite/C/RT sputtered ZnO/Al structure is higher than the (16.23 mA/cm2) and (0.90 V) of the reference SC with glass/ITO/PEDOT:PSS/perovskite/C/bathocuproine (BCP)/Al structure. Although the SCs with the former structure has a lower fill factor (FF%) than the SCs with the latter structure, its conversion efficiency % (10.93%) is higher than that (10.6%) of the latter.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/25/1.4938570.html;jsessionid=RU1VBpWjSJrKKbWPNm-xkWHF.x-aip-live-02?itemId=/content/aip/journal/apl/107/25/10.1063/1.4938570&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/25/10.1063/1.4938570&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/25/10.1063/1.4938570'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,