Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Z. Cheng and J. Lin, CrystEngComm 12, 2646 (2010).
2. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
3. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Nano Lett. 13, 1764 (2013).
4. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, Nat. Photonics 7, 486 (2013).
5. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).
6. L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, J. Am. Chem. Soc. 134, 17396 (2012).
7. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, Sci. Rep. 2, 591 (2012).
8. J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan, and S. Yang, Nanoscale 5, 3245 (2013).
9. H.-S. Kim, J.-W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Grätzel, and N.-G. Park, Nano Lett. 13, 2412 (2013).
10. A. Abrusci, S. D. Stranks, P. Docampo, H.-L. Yip, A. K.-Y. Jen, and H. J. Snaith, Nano Lett. 13, 3124 (2013).
11. B. Cai, Y. Xing, Z. Yang, W.-H. Zhang, and J. Qiu, Energy Environ. Sci. 6, 1480 (2013).
12. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature 499, 316 (2013).
13. M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013).
14. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, Adv. Funct. Mater. 24, 151 (2014).
15. E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel, and F. D. Angelis, J. Phys. Chem. C 117, 13902 (2013).
16. U. B. Cappel, T. Daeneke, and U. Bach, Nano Lett. 12, 4925 (2012).
17. H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science 345, 542 (2014).
18. P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, Nat. Commun. 4, 2761 (2013).
19. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, and Y. M. Lam, Energy Environ. Sci. 7, 399 (2014).
20. M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix, and N. Mathews, Chem. Commun. 49, 11089 (2013).
21. Y.-F. Chiang, J.-Y. Jeng, M.-H. Lee, S.-R. Peng, P. Chen, T.-F. Guo, T.-C. Wen, Y.-J. Hsu, and C.-M. Hsu, Phys. Chem. Chem. Phys. 16, 6033 (2014).
22. D. Liu, M. K. Gangishetty, and T. L. Kelly, J. Mater. Chem. A 2, 19873 (2014).
23. D. Liu and T. L. Kelly, Nat. Photonics 8, 133 (2014).
24. K. Mahmood, B. S. Swain, and A. Amassian, Nanoscale 6, 14674 (2014).
25. J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xu, J. Luo, J. Xu, D. Li, Y. Luo, and Q. Meng, Chem. Commun. 50, 13381 (2014).
26. J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, ACS Nano 8, 1674 (2014).
27. H. Zhou, Y. Shi, K. Wang, Q. Dong, X. Bai, Y. Xing, Y. Du, and T. Ma, J. Phys. Chem. C 119, 4600 (2015).
28. J. Zhang, P. Barboux, and T. Pauporté, Adv. Energy Mater. 4, 1400932 (2014).
29. Z. L. Wang, J. Phys.: Condens. Matter 16, R829 (2004).
30. O. Lupan, V. M. Guérin, I. M. Tiginyanu, V. V. Ursaki, L. Chow, H. Heinrich, and T. Pauporté, J. Photochem. Photobiol., A 211, 65 (2010).
31. C. Magne, T. Moehl, M. Urien, M. Grätzel, and T. Pauporté, J. Mater. Chem. A 1, 2079 (2013).
32. K. Mahmood, R. Munir, B. S. Swain, G.-S. Han, B.-J. Kim, and H. S. Jung, RSC Adv. 4, 9072 (2014).
33. J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, and T.-C. Wen, Adv. Mater. 25, 3727 (2013).
34. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Science 342, 344 (2013).
35. E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R. Bowring, T. Heumüller, M. G. Christoforod, and M. D. McGehee, Energy Environ. Sci. 7, 3690 (2014).
36. J. A. Christians, J. S. Manser, and P. V. Kamat, J. Phys. Chem. Lett. 6, 852 (2015).
37. W. Tress, N. Marinova, T. Moehl, S. M. Zakeeruddin, M. K. Nazeeruddina, and M. Grätzel, Energy Environ. Sci. 8, 995 (2015).
38. A. Abate, S. Paek, F. Giordano, J.-P. Correa-Baena, M. Saliba, P. Gao, T. Matsui, J. Ko, S. M. Zakeeruddin, K. H. Dahmen, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin, Energy Environ. Sci. 8, 2946 (2015).
39. K. Wojciechowski, S. D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala, N. Kopidakis, G. Rumbles, C.-Z. Li, R. H. Friend, A. K.-Y. Jen, and H. J. Snaith, ACS Nano 8, 12701 (2014).
40. K. Wojciechowski, T. Leijtens, S. Siprova, C. Schlueter, M. T. Hörantner, J. T.-W. Wang, C.-Z. Li, A. K.-Y. Jen, T.-L. Lee, and H. J. Snaith, J. Phys. Chem. Lett. 6, 2399 (2015).
41. W. Ke, D. Zhao, C. R. Grice, A. J. Cimaroli, J. Ge, H. Tao, H. Lei, G. Fang, and Y. Yan, J. Mater. Chem. A 3, 17971 (2015).
42. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, Nat. Commun. 5, 5784 (2014).
43. A. H. Jayatissa, A. Nadarajah, and A. K. Dutta, in Nanofabrication: Technologies, Devices, and Applications II 2005: International Conference on Nanofabrication, Boston, Massachusetts, USA, 23–25 October 2005, edited by Warren Y.-C. Lai, L. E. Ocola, and S. Pau, pp. 60021A160021A7.

Data & Media loading...


Article metrics loading...



We have demonstrated the performance of inverted CHNHPbI perovskite-based solar cells (SCs) with a room temperature (RT) sputteredZnO electron transport layer by adding fullerene (C) interlayer. ZnO exhibits a better matched conduction band level with perovskite and Al work function and around energy offset of 2.2 eV between highest occupied molecular orbital level of CHNHPbIperovskite and valance band level of ZnO. However, the CHNHPbIperovskite layer will be damaged during direct RT sputteringdeposition of ZnO. Therefore, the C interlayer having matched conduction band level with ZnO and CHNHPbIperovskite added between the CHNHPbIperovskite and RT sputteredZnO layers for protection prevents sputtering damages on the CHNHPbIperovskite layer. The short-circuit current density (, 19.41 mA/cm2) and open circuit voltage (, 0.91 V) of the SCs with glass/ITO/poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS)/perovskite/C/RT sputtered ZnO/Al structure is higher than the (16.23 mA/cm2) and (0.90 V) of the reference SC with glass/ITO/PEDOT:PSS/perovskite/C/bathocuproine (BCP)/Al structure. Although the SCs with the former structure has a lower fill factor (FF%) than the SCs with the latter structure, its conversion efficiency % (10.93%) is higher than that (10.6%) of the latter.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd