Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/26/10.1063/1.4938502
1.
1. C. H. Bennett and G. Brassard, “ Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India (IEEE, New York, 1984), pp. 175179.
2.
2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “ Quantum cryptography,” Rev. Mod. Phys. 74, 145195 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.145
3.
3. A. K. Ekert, “ Quantum cryptography based on Bell's theorem,” Phys. Rev. Lett. 67, 661663 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.661
4.
4. C. H. Bennett, G. Brassard, and N. D. Mermin, “ Quantum cryptography without Bell's theorem,” Phys. Rev. Lett. 68, 557559 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.557
5.
5. D. Naik, C. Peterson, A. White, A. Berglund, and P. Kwiat, “ Entangled state quantum cryptography: Eavesdropping on the ekert protocol,” Phys. Rev. Lett. 84, 47334736 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4733
6.
6. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “ Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 47294732 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4729
7.
7. G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “ Violation of Bell's inequality under strict Einstein locality conditions,” Phys. Rev. Lett. 81, 50395043 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.5039
8.
8. C. Erven, C. Couteau, R. Laflamme, and G. Weihs, “ Entangled quantum key distribution over two free-space optical links,” Opt. Express 16, 1684016853 (2008).
http://dx.doi.org/10.1364/OE.16.016840
9.
9. C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “ An entangled-light-emitting diode,” Nature 465, 594597 (2010).
http://dx.doi.org/10.1038/nature09078
10.
10. R. M. Stevenson, C. L. Salter, J. Nilsson, A. J. Bennett, M. B. Ward, I. Farrer, D. A. Ritchie, and A. J. Shields, “ Indistinguishable entangled photons generated by a light-emitting diode,” Phys. Rev. Lett. 108, 40503 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.040503
11.
11. J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “ Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311315 (2013).
http://dx.doi.org/10.1038/nphoton.2013.10
12.
12. A. J. Hudson, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “ Coherence of an entangled exciton-photon state,” Phys. Rev. Lett. 99, 266802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.266802
13.
13. J. G. Rarity, P. C. M. Owens, and P. R. Tapster, “ Quantum random-number generation and key sharing,” J. Mod. Opt. 41, 24352444 (1994).
http://dx.doi.org/10.1080/09500349414552281
14.
14. R. J. Young, R. M. Stevenson, A. J. Hudson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “ Bell-inequality violation with a triggered photon-pair source,” Phys. Rev. Lett. 102, 30406 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.030406
15.
15. R. M. Stevenson, C. L. Salter, A. de la Giroday, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “ Coherent entangled light generated by quantum dots in the presence of nuclear magnetic fields,” e-print arXiv:1103.2969.
16.
16. B. Kraus, N. Gisin, and R. Renner, “ Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication,” Phys. Rev. Lett. 95, 080501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.080501
17.
17. C. A. Fuchs, N. Gisin, R. B. Griffiths, C. Niu, and A. Peres, “ Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy,” Phys. Rev. A 56(2), 11631172 (1997).
http://dx.doi.org/10.1103/PhysRevA.56.1163
18.
18. E. Waks, A. Zeevi, and Y. Yamamoto, “ Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A 65, 052310 (2002).
http://dx.doi.org/10.1103/PhysRevA.65.052310
19.
19. G. Brassard and L. Salvail, “ Secret-key reconciliation by public discussion,” in Advances in Cryptology—EUROCRYPT'93, Lecture Notes in Computer Science Vol. 765, edited by T. Helleseth ( Springer-Verlag, Berlin, Heidelberg, 1994), pp. 410423.
20.
20. N. Lütkenhaus, “ Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
http://dx.doi.org/10.1103/PhysRevA.61.052304
21.
21. A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “ Ultrabright source of entangled photon pairs,” Nature 466, 217220 (2010).
http://dx.doi.org/10.1038/nature09148
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/26/10.1063/1.4938502
Loading
/content/aip/journal/apl/107/26/10.1063/1.4938502
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/26/10.1063/1.4938502
2015-12-28
2016-12-07

Abstract

Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/26/1.4938502.html;jsessionid=n2W-smAG4EPsZRp600hFzRVC.x-aip-live-06?itemId=/content/aip/journal/apl/107/26/10.1063/1.4938502&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/26/10.1063/1.4938502&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/26/10.1063/1.4938502'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,