Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovoltaics: Res. Appl. 23, 805 (2015).
2. H. Zhou, Y. Zhang, C.-K. Mai, S. D. Collins, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, Adv. Mater. 27, 1767 (2015).
3. L. Huo, T. Liu, X. Sun, Y. Cai, A. J. Heeger, and Y. Sun, Adv. Mater. 27, 2938 (2015).
4. H. Choi, S. Ko, T. Kim, P. Morin, B. Walker, B. H. Lee, M. Leclerc, J. Y. Kim, and A. J. Heeger, Adv. Mater. 27, 3318 (2015).
5. M. Jørgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008).
6. S. K. Hau, H.-L. Yip, and A. K.-Y. Jen, Polym. Rev. 50, 474 (2010).
7. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett. 89, 143517 (2006).
8. Y. Şahin, S. Alem, R. De Bettignies, and J. M. Nunzi, Thin Solid Films 476, 340 (2005).
9. G. Li, C.-W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Appl. Phys. Lett. 88, 253503 (2006).
10. N. K. Elumalai, A. Saha, C. Vijila, R. Jose, Z. Jie, and S. Ramakrishna, Phys. Chem. Chem. Phys. 15, 6831 (2013).
11. M. O. Reese, S. A. Gevorgyan, M. Jørgensen, E. Bundgaard, S. R. Kurtz, D. S. Ginley, D. C. Olson, M. T. Lloyd, P. Morvillo, E. A. Katz, A. Elschner, O. Haillant, T. R. Currier, V. Shrotriya, M. Hermenau, M. Riede, K. R. Kirov, G. Trimmel, T. Rath, O. Inganäs, F. Zhang, M. Andersson, K. Tvingstedt, M. Lira-Cantu, D. Laird, C. McGuiness, S. (Jimmy) Gowrisanker, M. Pannone, M. Xiao, J. Hauch, R. Steim, D. M. DeLongchamp, R. Rösch, H. Hoppe, N. Espinosa, A. Urbina, G. Yaman-Uzunoglu, J.-B. Bonekamp, A. J. J. M. van Breemen, C. Girotto, E. Voroshazi, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 95, 1253 (2011).
12. U. Vongsaysy, B. Pavageau, G. Wantz, D. M. Bassani, L. Servant, and H. Aziz, Adv. Energy Mater. 4, 1300752 (2014).
13. M. T. Dang, L. Hirsch, and G. Wantz, Adv. Mater. 23, 3597 (2011).
14. S. Han, W. S. Shin, M. Seo, D. Gupta, S.-J. Moon, and S. Yoo, Org. Electron. 10, 791 (2009).
15. A. Wagenpfahl, D. Rauh, M. Binder, C. Deibel, and V. Dyakonov, Phys. Rev. B 82, 115306 (2010).
16. R. Rösch, D. M. Tanenbaum, M. Jørgensen, M. Seeland, M. Bärenklau, M. Hermenau, E. Voroshazi, M. T. Lloyd, Y. Galagan, B. Zimmermann, U. Würfel, M. Hösel, H. F. Dam, S. A. Gevorgyan, S. Kudret, W. Maes, L. Lutsen, D. Vanderzande, R. Andriessen, G. Teran-Escobar, M. Lira-Cantu, A. Rivaton, G. Y. Uzunoğlu, D. Germack, B. Andreasen, M. V. Madsen, K. Norrman, H. Hoppe, and F. C. Krebs, Energy Environ. Sci. 5, 6521 (2012).
17. A. Kumar, S. Sista, and Y. Yang, J. Appl. Phys. 105, 094512 (2009).
18. L. Derue, O. Dautel, A. Tournebize, M. Drees, H. Pan, S. Berthumeyrie, B. Pavageau, E. Cloutet, S. Chambon, L. Hirsch, A. Rivaton, P. Hudhomme, A. Facchetti, and G. Wantz, Adv. Mater. 26, 5831 (2014).
19. L. Derue, C. Lecourtier, T. Gorisse, L. Hirsch, O. Dautel, and G. Wantz, RSC Adv. 5, 3840 (2015).
20. S. Chambon, L. Derue, M. Lahaye, B. Pavageau, L. Hirsch, and G. Wantz, Materials 5, 2521 (2012).
21. Y. Suh, N. Lu, S. H. Lee, W.-S. Chung, K. Kim, B. Kim, M. J. Ko, and M. J. Kim, ACS Appl. Mater. Interfaces 4, 5118 (2012).
22. N. Grossiord, J. M. Kroon, R. Andriessen, and P. W. M. Blom, Org. Electron. 13, 432 (2012).

Data & Media loading...


Article metrics loading...



The efficiency of organic photovoltaic (OPV) solar cells is constantly improving; however, the lifetime of the devices still requires significant improvement if the potential of OPV is to be realised. In this study, several series of inverted OPV were fabricated and thermally aged in the dark in an inert atmosphere. It was demonstrated that all of the devices undergo short circuit current-driven degradation, which is assigned to morphology changes in the active layer. In addition, a previously unreported, open circuit voltage-driven degradation mechanism was observed that is highly material specific and interfacial in origin. This mechanism was specifically observed in devices containing MoO and silver as hole transporting layers and electrodematerials, respectively. Devices with this combination were among the worst performing devices with respect to thermal ageing. The physical origins of this mechanism were explored by Rutherford backscattering spectrometry and atomic force microscopy and an increase in roughness with thermal ageing was observed that may be partially responsible for the ageing mechanism.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd