Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/3/10.1063/1.4927242
1.
1. E. Chow, A. Grot, L. Mirkarimi, M. Sigalas, and G. Girolami, Opt. Lett. 29, 1093 (2004).
http://dx.doi.org/10.1364/OL.29.001093
2.
2. M. R. Lee and P. M. Fauchet, Opt. Express 15, 4530 (2007).
http://dx.doi.org/10.1364/OE.15.004530
3.
3. H. Ren, F. Vollmer, S. Arnold, and A. Libchaber, Opt. Express 15, 17410 (2007).
http://dx.doi.org/10.1364/OE.15.017410
4.
4. F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
http://dx.doi.org/10.1038/nmeth.1221
5.
5. E. N. Shaforost, N. Klein, S. A. Vitusevich, A. Offenhäusser, and A. A. Barannik, J. Appl. Phys. 104, 074111 (2008).
http://dx.doi.org/10.1063/1.2991182
6.
6. E. N. Shaforost, N. Klein, S. A. Vitusevich, A. A. Barannik, and N. T. Cherpak, Appl. Phys. Lett. 94, 112901 (2009).
http://dx.doi.org/10.1063/1.3097015
7.
7. W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, S. Lucyszyn, and N. Klein, Sens. Actuators, A 217, 151 (2014).
http://dx.doi.org/10.1016/j.sna.2014.06.022
8.
8. Y. Akahane, T. Asano, B. Song, and S. Noda, Nature 425, 944 (2003).
http://dx.doi.org/10.1038/nature02063
9.
9. A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, Phys. Rev. Lett. 95, 153904 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.153904
10.
10. A. P. Gregory, “ Q-factor Measurement Using a Vector Network Analyser,” NPL Report No. MAT 58, 2013.
11.
11. L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization ( John Wiley and Sons, 2004), Chap. 6.
12.
12.See http://www.cst.com for more information regarding the frequency domain solver in CST Microwave Studio.
13.
13. P. Jepsen, U. Møller, and H. Merbold, Opt. Express 15, 14717 (2007).
http://dx.doi.org/10.1364/OE.15.014717
14.
14. T. Sato and R. Buchner, J. Phys. Chem. A 108, 5007 (2004).
http://dx.doi.org/10.1021/jp035255o
15.
15. K. Levenberg, Q. Appl. Math. 2, 164168 (1944).
16.
16. R. Inoue, H. Kitano, and A. Maeda, J. Appl. Phys. 93, 2736 (2003).
http://dx.doi.org/10.1063/1.1538314
17.
17. J. T. Kindt and C. A. Schmuttenmaer, J. Phys. Chem. 100, 10373 (1996).
http://dx.doi.org/10.1021/jp960141g
18.
18. J. Barthel, K. Bachhuber, R. Buchner, and H. Hetzenauer, Chem. Phys. Lett. 165, 369 (1990).
http://dx.doi.org/10.1016/0009-2614(90)87204-5
19.
19. J. Krupka, J. Breeze, A. Centeno, N. Alford, T. Claussen, and L. Jensen, IEEE Trans. Microwave Theory Tech. 54, 3995 (2006).
http://dx.doi.org/10.1109/TMTT.2006.883655
20.
20. J. Xu, K. W. Plaxco, and S. J. Allen, Protein Sci. 15, 1175 (2006).
http://dx.doi.org/10.1110/ps.062073506
21.
21.Permittivity of whole blood given in: S. Gabriel, R. W. Lau, and C. Gabriel, Phys. Med. Biol. 41, 2271 (1996).
http://dx.doi.org/10.1088/0031-9155/41/11/003
22.
22. J. Gauthier, P. Harel, and C. Brosseau, Can. Med. Assoc. J. 109, 3 (1973).
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/3/10.1063/1.4927242
Loading
/content/aip/journal/apl/107/3/10.1063/1.4927242
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/3/10.1063/1.4927242
2015-07-21
2016-09-30

Abstract

We present a highly sensitive technique for determining the complex permittivity of nanoliter liquid samples in the terahertz band based on a photonic crystal resonator and microcapillary. Liquids are characterized by using a capillary tube to introduce a ∼4 nl liquid sample into the electromagnetic field of a resonant mode confined by an L3 resonant cavity in a high-resistivity silicon photonic crystal slab. Monitoring the perturbation of the resonant frequency and unloaded Q-factor of the resonant mode at 100 GHz and ∼5800, respectively, allows a sample's permittivity to be calculated. An analytical model describing the system response based on perturbation theory and quasi-static analysis of the electric field within the capillary is also presented and found to agree well with FEM simulations and experimental measurements of ethanol-water mixtures of various concentrations for low to moderate loss tangents of the liquid samples. We demonstrate the utility of this approach by measuring the complex permittivity of several bioliquids, including suspensions of red and white blood cells. These results represent a step towards a lab-on-a-chip device for the analysis of extremely small quantities of biological, toxic, explosive, and other liquid types at terahertz frequencies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/3/1.4927242.html;jsessionid=xYxg0rR9b1YS7QfDOZwiYoNV.x-aip-live-02?itemId=/content/aip/journal/apl/107/3/10.1063/1.4927242&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/3/10.1063/1.4927242&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/3/10.1063/1.4927242'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,