Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. R. Forrest, Nature 428, 911 (2004).
2. J. Clark and G. Lanzani, Nat. Photonics 4, 438 (2010).
3. I. D. W. Samuel and G. A. Turnbull, Chem. Rev. 107, 1272 (2007).
4. V. G. Kozlov and S. R. Forrest, Curr. Opin. Solid State Mater. Sci. 4, 203 (1999).
5. C. Grivas and M. Pollnau, Laser Photonics Rev. 6, 419 (2012).
6. S. Allard, M. Forster, B. Souharce, H. Thiem, and U. Scherf, Angew. Chem. Int. Ed. 47, 4070 (2008).
7. T. Malinauskas, M. Daskeviciene, G. Bubniene, I. Petrikyte, S. Raisys, K. Kazlauskas, V. Gaidelis, V. Jankauskas, R. Maldzius, S. Jursenas, and V. Getautis, Chem. Eur. J. 19, 15044 (2013).
8. Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, and Z. Bao, Nat. Commun. 5, 3005 (2014).
9. T. Virgili, D. Marinotto, C. Manzoni, G. Cerullo, and G. Lanzani, Phys. Rev. Lett. 94, 117402 (2005).
10. M. A. Baldo, R. J. Holmes, and S. R. Forrest, Phys. Rev. B 66, 035321 (2002).
11. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed. ( Oxford University Press, New York, 1999).
12. K. Kazlauskas, G. Kreiza, E. Radiunas, P. Adomėnas, O. Adomėnienė, K. Karpavičius, J. Bucevičius, V. Jankauskas, and S. Juršėnas, Phys. Chem. Chem. Phys. 17, 12935 (2015).
13.See supplementary material at for synthesis, carrier drift mobilities, and amplified spontaneous emission data.[Supplementary Material]
14. K. L. Shaklee and R. F. Leheny, Appl. Phys. Lett. 18, 475 (1971).
15. K. Kazlauskas, G. Tamulaitis, A. Žukauskas, T. Suski, P. Perlin, M. Leszczynski, P. Prystawko, and I. Grzegory, Phys. Rev. B 69, 245316 (2004).
16. A. Miasojedovas, K. Kazlauskas, G. Armonaite, V. Sivamurugan, S. Valiyaveettil, J. V. Grazulevicius, and S. Jursenas, Dyes Pigm. 92, 1285 (2012).
17. T. Serevičius, R. Komskis, P. Adomėnas, O. Adomėnienė, V. Jankauskas, A. Gruodis, K. Kazlauskas, and S. Juršėnas, Phys. Chem. Chem. Phys. 16, 7089 (2014).
19. G. Kranzelbinder and G. Leising, Rep. Prog. Phys. 63, 729 (2000).
20. H. Nakanotani, S. Akiyama, D. Ohnishi, M. Moriwake, M. Yahiro, T. Yoshihara, S. Tobita, and C. Adachi, Adv. Funct. Mater. 17, 2328 (2007).
21. E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, R. Gomez, J. L. Segura, and M. A. Diaz-Garcia, J. Phys. Chem. C 111, 13595 (2007).
22. B. H. Wallikewitz, D. Hertel, and K. Meerholz, Chem. Mater. 21, 2912 (2009).
23. G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, Appl. Phys. Lett. 94, 243304 (2009).
24. E. Y. Choi, L. Mazur, L. Mager, M. Gwon, D. Pitrat, J. C. Mulatier, C. Monnereau, A. Fort, A. J. Attias, K. Dorkenoo, J. E. Kwon, Y. Xiao, K. Matczyszyn, M. Samoc, D.-W. Kim, A. Nakao, B. Heinrich, D. Hashizume, M. Uchiyama, S. Y. Park, F. Mathevet, T. Aoyama, C. Andraud, J. W. Wu, A. Barsella, and J. C. Ribierre, Phys. Chem. Chem. Phys. 16, 16941 (2014).
25. J. C. Ribierre, G. Tsiminis, S. Richardson, G. A. Turnbull, I. D. W. Samuel, H. S. Barcena, and P. L. Burn, Appl. Phys. Lett. 91, 081108 (2007).
26. G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel, Appl. Phys. Lett. 81, 415 (2002).
27. B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, Nat. Mater. 7, 376 (2008).
28. H. Rabbani-Haghighi, S. Forget, S. Chénais, A. Siove, M.-C. Castex, and E. Ishow, Appl. Phys. Lett. 95, 033305 (2009).
29. R. Xia, W. Lai, P. A. Levermore, W. Huang, and D. D. C. Bradley, Adv. Funct. Mater. 19, 2844 (2009).
30. S. Ning, Z. Wu, H. Dong, F. Yuan, L. Ma, Y. Yu, B. Jiao, and X. Hou, Org. Electron. 15, 2052 (2014).
31. E. M. Calzado, P. G. Boj, and M. A. Díaz-García, Int. J. Mol. Sci. 11, 2546 (2010).

Data & Media loading...


Article metrics loading...



Deliberate control of intermolecular interactions in fluorene- and benzofluorene-cored oligomers was attempted via introduction of different-length alkyl moieties to attain high emission amplification and low amplified spontaneous emission (ASE) threshold at high oligomer concentrations. Containing fluorenyl peripheral groups decorated with different-length alkyl moieties, the oligomers were found to express weak concentration quenching of emission, yet excellent carrier drift mobilities (close to 10−2 cm2/V/s) in the amorphous films. Owing to the larger radiative decay rates (>1.0 × 109 s−1) and smaller concentration quenching, fluorene-cored oligomers exhibited down to one order of magnitude lower ASE thresholds at higher concentrations as compared to those of benzofluorene counterparts. The lowest threshold (300 W/cm2) obtained for the fluorene-cored oligomers at the concentration of 50 wt % in polymer matrix is among the lowest reported for solution-processed amorphous films in ambient conditions, what makes the oligomers promising for lasing application. Great potential in emission amplification was confirmed by high maximum net gain (77 cm−1) revealed for these compounds. Although the photostability of the oligomers was affected by photo-oxidation, it was found to be comparable to that of various organic lasing materials including some commercial laser dyes evaluated under similar excitation conditions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd