Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, and J. S. Huang, Nat. Nanotechnol. 7, 798 (2012).
2. J. Lee, P. Jadhav, and M. A. Baldo, Appl. Phys. Lett. 95, 033301 (2009).
3. J. D. Zimmerman, V. V. Diev, K. Hanson, R. R. Lunt, E. K. Yu, M. E. Thompson, and S. R. Forrest, Adv. Mater. 22, 2780 (2010).
4. Q. D. Ou, L. Zhou, Y. Q. Li, S. Shen, J. D. Chen, C. Li, Q. K. Wang, S. T. Lee, and J. X. Tang, Adv. Funct. Mater. 24, 7249 (2014).
5. Y. Seino, H. Sasabe, Y. J. Pu, and J. Kido, Adv. Mater. 26, 1612 (2014).
6. J. W. Sun, J. H. Lee, C. K. Moon, K. H. Kim, H. Shin, and J. J. Kim, Adv. Mater. 26, 5684 (2014).
7. N. Zhou, H. Lin, S. J. Lou, X. Yu, P. Guo, E. F. Manley, S. Loser, P. Hartnett, H. Huang, M. R. Wasielewski, L. X. Chen, R. P. H. Chang, A. Facchetti, and T. J. Marks, Adv. Energy Mater. 4, 1300785 (2014).
8. Y. Zang, C. Li, C. Chueh, S. T. Williams, W. Jiang, Z. Wang, J. Yu, and A. K. Y. Jen, Adv. Mater. 26, 5708 (2014).
9. G. Li, R. Zhu, and Y. Yang, Nat. Photonics 6, 153 (2012).
10. X. Gong, M. H. Tong, Y. J. Xia, W. Z. Cai, J. S. Moon, Y. Cao, G , Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, Science 325, 1665 (2009).
11. G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, Nat. Photonics 1, 531 (2007).
12. G. Yu, J. Wang, J. McElvain, and A. J. Heeger, Adv. Mater. 10, 1431 (1998).<1431::AID-ADMA1431>3.0.CO;2-4
13. H. W. Lin, S. Y. Ku, H. C. Su, C. W. Huang, Y. T. Lin, K. T. Wong, and C. C. Wu, Adv. Mater. 17, 2489 (2005).
14. J. L. Zhang, Y. X. Nan, H. G. Li, W. M. Qiu, X. Yang, G. Wu, H. Z. Chen, and M. Wang, Sens. Actuators, B 162, 321 (2012).
15. D. B. Li, X. J. Sun, H. Song, Z. M. Li, Y. R. Chen, H. Jiang, and G. Q. Miao, Adv. Mater. 24, 845 (2012).
16. K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, Adv. Mater. 25, 4267 (2013).
17. H. Y. Wang, J. Zhou, X. Wang, Z. Y. Lu, and J. S. Yu, Appl. Phys. Lett. 105, 063303 (2014).
18. G. Zhang, W. L. Li, B. Chu, Z. S. Su, D. F. Yang, F. Yan, Y. R. Chen, D. Y. Zhang, L. L. Han, J. B. Wang, H. H. Liu, G. B. Che, Z. Q. Zhang, and Z. Z. Hu, Org. Electron. 10, 352 (2009).
19. F. Ali, N. Periasamy, M. P. Patankar, and K. L. Narasimhan, J. Phys. Chem. C 115, 2462 (2011).
20. V. I. Arkhipov, P. Heremans, and H. Bässler, Appl. Phys. Lett. 82, 4605 (2003).
21. L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R. A. Street, and Y. Yang, Adv. Mater. 25, 6642 (2013).
22. J. Zhou, P. Chen, X. Wang, Y. Wang, Y. Wang, F. Li, M. H. Yang, Y. Huang, J. S. Yu, and Z. Y. Lu, Chem. Commun. 50, 7586 (2014).
23. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature 492, 234 (2012).
24. H. B. Yu, E. A. Azhar, T. Belagodu, S. Lim, and S. Dey, J. Appl. Phys. 111, 102806 (2012).
25. X. Wang, H. Y. Wang, W. Huang, and J. S. Yu, Org. Electron. 15, 3000 (2014).
26. H. Vázquez, W. Gao, F. Flores, and A. Kahn, Phys. Rev. B 71, 041306 (2005).
27. T. Komino, H. Nomura, T. Koyanagi, and C. Adachi, Chem. Mater. 25, 3038 (2013).
28. A. Niwa, T. Kobayashi, T. Nagase, K. Goushi, C. Adachi, and H. Naito, Appl. Phys. Lett. 104, 213303 (2014).
29. H. Nakanotani, K. Masui, J. Nishide, T. Shibata, and C. Adachi, Sci. Rep. 3, 2127 (2013).
30. B. S. Kim and J. Y. Lee, Adv. Funct. Mater. 24, 3970 (2014).
31. H. Fukagawa, T. Shimizu, N. Ohbe, S. Tokito, K. Tokumaru, and H. Fujikake, Org. Electron. 13, 1197 (2012).

Data & Media loading...


Article metrics loading...



A high performance organic ultraviolet (UV) photodetector with efficient electroluminescence (EL) was obtained by using a thermally activated delayed fluorescence (TADF) emitter of (4s,6s)-2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN). An exciton adjusting layer (EAL) was delicately designed to construct an energy-level-aligned heterojunction with 4CzIPN. As a result, the bi-functional device exhibited a high detectivity of 1.4 × 1012 Jones under 350 nm UV light. Moreover, our device exhibited efficient EL emission utilizing the merit of reverse intersystem crossing process from triplet to singlet excitons of 4CzIPN, showing a maximum luminance, current efficiency, and power efficiency of 26370 cd/m2, 8.2 cd/A, and 4.9 lm/W, respectively. This work arouses widespread interest in constructing efficient bi-functional device based on TADF emitter and EAL structure.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd