Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/4/10.1063/1.4927708
1.
1. F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano 5(1), 26 (2011).
http://dx.doi.org/10.1021/nn102598m
2.
2. M. D. McCluskey and S. J. Jokela, J. Appl. Phys. 106(7), 071101 (2009).
http://dx.doi.org/10.1063/1.3216464
3.
3. M. Kleman and J. Friedel, Rev. Mod. Phys. 80(1), 61 (2008).
http://dx.doi.org/10.1103/RevModPhys.80.61
4.
4. C. Kittel, Introduction to Solid State Physics ( John Wiley & Sons, New York, 2005).
5.
5. J. D. Hartgerink, E. Beniash, and S. I. Stupp, Science 294(5547), 1684 (2001).
http://dx.doi.org/10.1126/science.1063187
6.
6. G. M. Whitesides and B. Grzybowski, Science 295(5564), 2418 (2002).
http://dx.doi.org/10.1126/science.1070821
7.
7. S. G. Zhang, Nat. Biotechnol. 21(10), 1171 (2003).
http://dx.doi.org/10.1038/nbt874
8.
8. R. V. Ulijn and A. M. Smith, Chem. Soc. Rev. 37(4), 664 (2008).
http://dx.doi.org/10.1039/b609047h
9.
9. C. A. Ross and M. A. Poirier, Nat. Med. 10(7), S10 (2004).
http://dx.doi.org/10.1038/nm1066
10.
10. F. Chiti and C. M. Dobson, Annu. Rev. Biochem. 75, 333 (2006).
http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901
11.
11. J. P. Jimenez, J. Naki Guijarro, E. Orlova, J. Zurdo, M. Dobson, M. Sunde, and H. Saibil, EMBO J. 18, 815 (1999).
http://dx.doi.org/10.1093/emboj/18.4.815
12.
12. M. R. Sawaya, S. Sambashivan, R. Nelson, M. I. Ivanova, S. A. Sievers, M. I. Apostol, M. J. Thompson, M. Balbirnie, J. J. W. Wiltzius, H. T. McFarlane, A. O. Madsen, C. Riekel, and D. Eisenberg, Nature 447(7143), 453 (2007).
http://dx.doi.org/10.1038/nature05695
13.
13. A. W. P. Fitzpatrick, G. T. Debelouchina, M. J. Bayro, D. K. Clare, M. A. Caporini, V. S. Bajaj, C. P. Jaroniec, L. C. Wang, V. Ladizhansky, S. A. Muller, C. E. MacPhee, C. A. Waudby, H. R. Mott, A. De Simone, T. P. J. Knowles, H. R. Saibil, M. Vendruscolo, E. V. Orlova, R. G. Griffin, and C. M. Dobson, Proc. Natl. Acad. Sci. U.S.A. 110(14), 5468 (2013).
http://dx.doi.org/10.1073/pnas.1219476110
14.
14. K. Lu, J. Jacob, P. Thiyagarajan, V. P. Conticello, and D. G. Lynn, J. Am. Chem. Soc. 125(21), 6391 (2003).
http://dx.doi.org/10.1021/ja0341642
15.
15. M. S. Lamm, K. Rajagopal, J. P. Schneider, and D. J. Pochan, J. Am. Chem. Soc. 127(47), 16692 (2005).
http://dx.doi.org/10.1021/ja054721f
16.
16. A. M. Smith, R. J. Williams, C. Tang, P. Coppo, R. F. Collins, M. L. Turner, A. Saiani, and R. V. Ulijn, Adv. Mater. 20(1), 37 (2008).
http://dx.doi.org/10.1002/adma.200701221
17.
17. Y. R. Zhao, J. Q. Wang, L. Deng, P. Zhou, S. J. Wang, Y. T. Wang, H. Xu, and J. R. Lu, Langmuir 29(44), 13457 (2013).
http://dx.doi.org/10.1021/la402441w
18.
18. H. D. Nguyen and C. K. Hall, J. Am. Chem. Soc. 128(6), 1890 (2006).
http://dx.doi.org/10.1021/ja0539140
19.
19. S. Auer, C. M. Dobson, M. Vendruscolo, and A. Maritan, Phys. Rev. Lett. 101(25), 258101 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.258101
20.
20. A. Irback, S. A. E. Jonsson, N. Linnemann, B. Linse, and S. Wallin, Phys. Rev. Lett. 110(5), 058101 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.058101
21.
21. S. Armon, E. Efrati, R. Kupferman, and E. Sharon, Science 333(6050), 1726 (2011).
http://dx.doi.org/10.1126/science.1203874
22.
22. R. Ghafouri and R. Bruinsma, Phys. Rev. Lett. 94(13), 138101 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.138101
23.
23. R. L. B. Selinger, J. V. Selinger, A. P. Malanoski, and J. M. Schnur, Phys. Rev. Lett. 93(15), 158103 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.158103
24.
24. A. Aggeli, I. A. Nyrkova, M. Bell, R. Harding, L. Carrick, T. C. B. McLeish, A. N. Semenov, and N. Boden, Proc. Natl. Acad. Sci. U.S.A. 98(21), 11857 (2001).
http://dx.doi.org/10.1073/pnas.191250198
25.
25. I. Nyrkova, A. N. Semenov, A. Aggeli, and N. Boden, Eur. Phys. J. B 17, 481 (2000).
http://dx.doi.org/10.1007/s100510070127
26.
26. W. S. Childers, N. R. Anthony, A. K. Mehta, K. M. Berland, and D. G. Lynn, Langmuir 28(15), 6386 (2012).
http://dx.doi.org/10.1021/la300143j
27.
27. E. T. Pashuck and S. I. Stupp, J. Am. Chem. Soc. 132(26), 8819 (2010).
http://dx.doi.org/10.1021/ja100613w
28.
28. L. Ziserman, H. Y. Lee, S. R. Raghavan, A. Mor, and D. Danino, J. Am. Chem. Soc. 133(8), 2511 (2011).
http://dx.doi.org/10.1021/ja107069f
29.
29. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications ( Academic Press, New York, 2001).
30.
30.See supplementary material at http://dx.doi.org/10.1063/1.4927708 for the phase behavior and typical morphologies of the self-assembled structures with respect to interlayer attraction.[Supplementary Material]
31.
31. C. Lin and M. J. Perry, Proceedings of IEEE Workshop on Computer Vision: Representation and Control ( IEEE Computer Society Press, Silver Spring, 1982).
32.
32. D. W. Weatherford and F. R. Saleme, Proc. Natl. Acad. Sci. U.S.A. 76, 19 (1979).
http://dx.doi.org/10.1073/pnas.76.1.19
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/4/10.1063/1.4927708
Loading
/content/aip/journal/apl/107/4/10.1063/1.4927708
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/4/10.1063/1.4927708
2015-07-30
2016-12-11

Abstract

In contrast to extensively studied defects in traditional materials, we report here a systematic investigation of the formation mechanism of intrinsic defects in self-assembled peptide nanostructures. The Monte Carlo simulations with our simplified dynamic hierarchical model revealed that the symmetry breaking of layer bending mode at the two ends during morphological transformation is responsible for intrinsic defect formation, whose microscopic origin is the mismatch between layer stacking along the side-chain direction and layer growth along the hydrogen bond direction. Moreover, defect formation does not affect the chirality of the self-assembled structure, which is determined by the initial steps of the peptide self-assembly process.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/4/1.4927708.html;jsessionid=BZ3HeH-M5dDgpQaa0yB9EqPx.x-aip-live-03?itemId=/content/aip/journal/apl/107/4/10.1063/1.4927708&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/4/10.1063/1.4927708&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/4/10.1063/1.4927708'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,