Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/5/10.1063/1.4927595
1.
1. M. Berggren and A. Richter-Dahlfors, Adv. Mater. 19(20), 3201 (2007).
http://dx.doi.org/10.1002/adma.200700419
2.
2. D. A. Bernards and G. G. Malliaras, Adv. Funct. Mater. 17(17), 3538 (2007).
http://dx.doi.org/10.1002/adfm.200601239
3.
3. G. Tarabella, F. M. Mohammadi, N. Coppedè, F. Barbero, S. Iannotta, C. Santato, and F. Cicoira, Chem. Sci. 4(4), 1395 (2013).
http://dx.doi.org/10.1039/c2sc21740f
4.
4. J. M. Leger, Adv. Mater. 20(4), 837 (2008).
http://dx.doi.org/10.1002/adma.200701874
5.
5. J. Rivnay, R. M. Owens, and G. G. Malliaras, Chem. Mater. 26(1), 679 (2014).
http://dx.doi.org/10.1021/cm4022003
6.
6. J. Isaksson, P. Kjall, D. Nilsson, N. D. Robinson, M. Berggren, and A. Richter-Dahlfors, Nat. Mater. 6(9), 673 (2007).
http://dx.doi.org/10.1038/nmat1963
7.
7. Z. T. Zhu, J. T. Mabeck, C. Zhu, N. C. Cady, C. A. Batt, and G. G. Malliaras, Chem. Commun. 2004, 1556.
http://dx.doi.org/10.1039/b403327m
8.
8. M. M. de Kok, M. Buechel, S. I. E. Vulto, P. van de Weijer, E. A. Meulenkamp, S. H. P. M. de Winter, A. J. G. Mank, H. J. M. Vorstenbosch, C. H. L. Weijtens, and V. van Elsbergen, Phys. Status Solidi A 201(6), 1342 (2004).
http://dx.doi.org/10.1002/pssa.200404338
9.
9. Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, Adv. Funct. Mater. 21(6), 1076 (2011).
http://dx.doi.org/10.1002/adfm.201002290
10.
10. A. Campana, T. Cramer, D. T. Simon, M. Berggren, and F. Biscarini, Adv. Mater. 26(23), 3874 (2014).
http://dx.doi.org/10.1002/adma.201400263
11.
11. D. J. Kim, N. E. Lee, J. S. Park, I. J. Park, J. G. Kim, and H. J. Cho, Biosens. Bioelectron. 25(11), 2477 (2010).
http://dx.doi.org/10.1016/j.bios.2010.04.013
12.
12. P. Lin and F. Yan, Adv. Mater. 24(1), 34 (2012).
http://dx.doi.org/10.1002/adma.201103334
13.
13. S. Zhang, P. Kumar, A. S. Nouas, L. Fontaine, H. Tang, and F. Cicoira, APL Mater. 3(1), 014911 (2015).
http://dx.doi.org/10.1063/1.4905154
14.
14. F. Cicoira, M. Sessolo, O. Yaghmazadeh, J. A. DeFranco, S. Y. Yang, and G. G. Malliaras, Adv. Mater. 22(9), 1012 (2010).
http://dx.doi.org/10.1002/adma.200902329
15.
15. P. C. Hütter, T. Rothländer, A. Haase, G. Trimmel, and B. Stadlober, Appl. Phys. Lett. 103(4), 043308 (2013).
http://dx.doi.org/10.1063/1.4816781
16.
16. O. Yaghmazadeh, F. Cicoira, D. A. Bernards, S. Y. Yang, Y. Bonnassieux, and G. G. Malliaras, J. Polym. Sci. Part B: Polym. Phys. 49(1), 34 (2011).
http://dx.doi.org/10.1002/polb.22129
17.
17. D. Khodagholy, J. Rivnay, M. Sessolo, M. Gurfinkel, P. Leleux, L. H. Jimison, E. Stavrinidou, T. Herve, S. Sanaur, R. M. Owens, and G. G. Malliaras, Nat. Commun. 4, 2133 (2013).
http://dx.doi.org/10.1038/ncomms3133
18.
18. G. Tarabella, C. Santato, S. Y. Yang, S. Iannotta, G. G. Malliaras, and F. Cicoira, Appl. Phys. Lett. 97(12), 123304 (2010).
http://dx.doi.org/10.1063/1.3491216
19.
19. H. Tang, P. Kumar, S. Zhang, Z. Yi, G. De Crescenzo, C. Santato, F. Soavi, and F. Cicoira, ACS Appl. Mater. Interfaces 7(1), 969 (2015).
http://dx.doi.org/10.1021/am507708c
20.
20. G. Tarabella, G. Nanda, M. Villani, N. Coppedè, R. Mosca, G. G. Malliaras, C. Santato, S. Iannotta, and F. Cicoira, Chem. Sci. 3(12), 3432 (2012).
http://dx.doi.org/10.1039/c2sc21020g
21.
21. G. Tarabella, A. G. Balducci, N. Coppede, S. Marasso, P. D'Angelo, S. Barbieri, M. Cocuzza, P. Colombo, F. Sonvico, R. Mosca, and S. Iannotta, Biochim. Biophys. Acta 1830(9), 4374 (2013).
http://dx.doi.org/10.1016/j.bbagen.2012.12.018
22.
22. S. Y. Yang, F. Cicoira, R. Byrne, F. Benito-Lopez, D. Diamond, R. M. Owens, and G. G. Malliaras, Chem. Commun. 46(42), 7972 (2010).
http://dx.doi.org/10.1039/c0cc02064h
23.
23. F. Dinelli, M. Murgia, P. Levy, M. Cavallini, F. Biscarini, and D. de Leeuw, Phys. Rev. Lett. 92(11), 116802 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.116802
24.
24. J. Rivnay, P. Leleux, M. Sessolo, D. Khodagholy, T. Herve, M. Fiocchi, and G. G. Malliaras, Adv. Mater. 25(48), 7010 (2013).
http://dx.doi.org/10.1002/adma.201303080
25.
25. J. Rivnay, P. Leleux, M. Ferro, M. Sessolo, A. Williamson, D. A. Koutsouras, D. Khodagholy, M. Ramuz, X. Strakosas, R. M. Owens, C. Benar, J-M. Badie, C. Bernard, and G. G. Malliaras, Sci. Adv. 1(4), E1400251 (2015).
http://dx.doi.org/10.1126/sciadv.1400251
26.
26. S. Y. Yang, J. A. Defranco, Y. A. Sylvester, T. J. Gobert, D. J. Macaya, R. M. Owens, and G. G. Malliaras, Lab Chip 9(5), 704 (2009).
http://dx.doi.org/10.1039/B811606G
27.
27. F. M. Smits, Bell Syst. Tech. J. 37(3), 711 (1958).
http://dx.doi.org/10.1002/j.1538-7305.1958.tb03883.x
28.
28. S. De and J. N. Coleman, MRS Bull. 36(10), 774 (2011).
http://dx.doi.org/10.1557/mrs.2011.236
29.
29. V. G. Rao, C. Ghatak, S. Ghosh, R. Pramanik, S. Sarkar, S. Mandal, and N. Sarkar, J. Phys. Chem. B 115(14), 3828 (2011).
http://dx.doi.org/10.1021/jp200233q
30.
30. T. Johansson, L. A. A. Pettersson, and O. Inganas, Synt. Met. 129(3), 269 (2002).
http://dx.doi.org/10.1016/S0379-6779(02)00086-3
31.
31. B. Winther-Jensen, O. Winther-Jensen, M. Forsyth, and D. R. MacFarlane, Science 321(5889), 671 (2008).
http://dx.doi.org/10.1126/science.1159267
32.
32. M. Zhang, W. Yuan, B. Yao, C. Li, and G. Shi, ACS Appl. Mater. Interfaces 6(5), 3587 (2014).
http://dx.doi.org/10.1021/am405771y
33.
33. R. Kerr, C. Pozo-Gonzalo, M. Forsyth, and B. Winther-Jensen, Electrochim. Acta 154, 142 (2015).
http://dx.doi.org/10.1016/j.electacta.2014.12.048
34.
34. R. Kerr, C. Pozo-Gonzalo, M. Forsyth, and B. Winther-Jensen, ECS Electrochem. Lett. 2(3), F29 (2013).
http://dx.doi.org/10.1149/2.010303eel
35.
35. K. K. Tintula, A. K. Sahu, A. Shahid, S. Pitchumani, P. Sridhar, and A. K. Shukla, J. Electrochem. Soc. 157(11), B1679 (2010).
http://dx.doi.org/10.1149/1.3486172
36.
36. S. Bubel, M. S. Menyo, T. E. Mates, J. H. Waite, and M. L. Chabinyc, Adv. Mater. 27(21), 3331 (2015).
http://dx.doi.org/10.1002/adma.201500556
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/5/10.1063/1.4927595
Loading
/content/aip/journal/apl/107/5/10.1063/1.4927595
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/5/10.1063/1.4927595
2015-08-06
2016-10-01

Abstract

We investigated the device characteristics of organic electrochemical transistors based on thin films of poly(3,4-ethylenedioxythiophene) doped with poly(styrene-sulfonate). We employed various channel thicknesses and two different electrolytes: the micelle forming surfactant cetyltrimethyl ammonium bromide (CTAB) and NaCl. The highest ON/OFF ratios were achieved at low film thicknesses using CTAB as the electrolyte. Cyclic voltammetry suggests that a redox reaction between oxygen dissolved in the electrolytes and PEDOT:PSS leads to low ON/OFF ratios when NaCl is used as the electrolyte. Electrochemical impedance spectroscopy reveals that doping/dedoping of the channel becomes slower at high film thickness and in the presence of bulky ions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/5/1.4927595.html;jsessionid=B2Takwnf1xUty2Ar4TJ9s7Y7.x-aip-live-02?itemId=/content/aip/journal/apl/107/5/10.1063/1.4927595&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/5/10.1063/1.4927595&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/5/10.1063/1.4927595'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,