Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/5/10.1063/1.4927673
1.
1. A. Schliesser, N. Picqué, and T. W. Hänsch, “ Mid-infrared frequency combs,” Nat. Photonics 6, 440449 (2012).
http://dx.doi.org/10.1038/nphoton.2012.142
2.
2. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “ Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
http://dx.doi.org/10.1063/1.3184828
3.
3. W. Knox, “ Ultrafast technology in telecommunications,” IEEE J. Sel. Top. Quantum Electron. 6, 1273 (2000).
http://dx.doi.org/10.1109/2944.902178
4.
4. K. Sugioka and Y. Cheng, “ Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3, e149 (2014).
http://dx.doi.org/10.1038/lsa.2014.30
5.
5. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “ Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435453 (1996).
http://dx.doi.org/10.1109/2944.571743
6.
6. D. J. H. C. Maas, A. R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “ Growth parameter optimization for fast quantum dot SESAMs,” Opt. Express 16, 1864618656 (2008).
http://dx.doi.org/10.1364/OE.16.018646
7.
7. A. Martinez and Z. Sun, “ Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842845 (2013).
http://dx.doi.org/10.1038/nphoton.2013.304
8.
8. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “ Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 30773083 (2009).
http://dx.doi.org/10.1002/adfm.200901007
9.
9. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “ Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21, 38743899 (2009).
http://dx.doi.org/10.1002/adma.200901122
10.
10. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “ Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
http://dx.doi.org/10.1063/1.4767919
11.
11. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “ Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4, 16 (2014).
http://dx.doi.org/10.1364/OME.4.000001
12.
12. K. Wang, J. Wang, J. Fan, M. Lotya, A. O'Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “ Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 92609267 (2013).
http://dx.doi.org/10.1021/nn403886t
13.
13. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “ Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22, 5159 (2004).
http://dx.doi.org/10.1109/JLT.2003.822205
14.
14. A. Schmidt, S. Rivier, G. Steinmeyer, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, X. Mateos, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “ Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33, 729731 (2008).
http://dx.doi.org/10.1364/OL.33.000729
15.
15. J. Sotor, G. Sobon, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “ Simultaneous mode-locking at 1565 nm and 1944 nm in fiber laser based on common graphene saturable absorber,” Opt. Express 21, 1899419002 (2013).
http://dx.doi.org/10.1364/OE.21.018994
16.
16. A. Martinez, K. Fuse, and S. Yamashita, “ Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett. 99, 121107 (2011).
http://dx.doi.org/10.1063/1.3641419
17.
17. N. Tolstik, E. Sorokin, and I. T. Sorokina, “ Graphene mode-locked Cr:ZnS laser with 41 fs pulse duration,” Opt. Express 22, 55645571 (2014).
http://dx.doi.org/10.1364/OE.22.005564
18.
18. J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “ Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
http://dx.doi.org/10.1038/srep05016
19.
19. W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “ High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett. 36, 40894091 (2011).
http://dx.doi.org/10.1364/OL.36.004089
20.
20. C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “ Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21, 3154831559 (2013).
http://dx.doi.org/10.1364/OE.21.031548
21.
21. S. Husaini and R. G. Bedford, “ Graphene saturable absorber for high power semiconductor disk laser mode-locking,” Appl. Phys. Lett. 104, 161107 (2014).
http://dx.doi.org/10.1063/1.4872258
22.
22. J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “ Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
http://dx.doi.org/10.1038/srep06346
23.
23. K. S. Novoselov, V. I. Fal′ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “ A roadmap for graphene,” Nature 490, 192200 (2012).
http://dx.doi.org/10.1038/nature11458
24.
24. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “ Graphene photonics and optoelectronics,” Nat. Photonics 4, 611622 (2010).
http://dx.doi.org/10.1038/nphoton.2010.186
25.
25. D. Akinwande, N. Petrone, and J. Hone, “ Two-dimensional flexible nanoelectronics,” Nat. Commun. 5, 5678 (2014).
http://dx.doi.org/10.1038/ncomms6678
26.
26. T. Mueller, F. Xia, and P. Avouris, “ Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4, 297301 (2010).
http://dx.doi.org/10.1038/nphoton.2010.40
27.
27. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “ A graphene-based broadband optical modulator,” Nature 474, 6467 (2011).
http://dx.doi.org/10.1038/nature10067
28.
28. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “ Broadband graphene polarizer,” Nat. Photonics 5, 411415 (2011).
http://dx.doi.org/10.1038/nphoton.2011.102
29.
29. X. Wang, L. Zhi, and K. Müllen, “ Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8, 323327 (2008).
http://dx.doi.org/10.1021/nl072838r
30.
30. Y. Wu, K. A. Jenkins, A. Valdes-Garcia, D. B. Farmer, Y. Zhu, A. A. Bol, C. Dimitrakopoulos, W. Zhu, F. Xia, P. Avouris, and Y.-M. Lin, “ State-of-the-art graphene high-frequency electronics,” Nano Lett. 12, 30623067 (2012).
http://dx.doi.org/10.1021/nl300904k
31.
31. Q. Bao and K. P. Loh, “ Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 36773694 (2012).
http://dx.doi.org/10.1021/nn300989g
32.
32. R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, and L. Hornekær, “ Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nat. Mater. 9, 315319 (2010).
http://dx.doi.org/10.1038/nmat2710
33.
33. Y. Zhang, T-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “ Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459, 820823 (2009).
http://dx.doi.org/10.1038/nature08105
34.
34. F. Xia, H. Wang, and Y. Jia, “ Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
http://dx.doi.org/10.1038/ncomms5458
35.
35. T. Nishii, Y. Maruyama, T. Inabe, and I. Shirotani, “ Synthesis and characterization of black phosphorus intercalation compounds,” Synth. Met. 18, 559564 (1987).
http://dx.doi.org/10.1016/0379-6779(87)90940-4
36.
36. H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “ Phosphorene: An unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8, 40334041 (2014).
http://dx.doi.org/10.1021/nn501226z
37.
37. Y. Cai, G. Zhang, and Y-W. Zhang, “ Layer-dependent band alignment and work function of few-layer phosphorene,” Sci. Rep. 4, 6677 (2014).
http://dx.doi.org/10.1038/srep06677
38.
38. J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, “ High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5, 4475 (2014).
http://dx.doi.org/10.1038/ncomms5475
39.
39. M. Engel, M. Steiner, and P. Avouris, “ Black phosphorus photodetector for multispectral, high-resolution imaging,” Nano Lett. 14, 64146417 (2014).
http://dx.doi.org/10.1021/nl502928y
40.
40. H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita et al., “ Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction,” Nat. Nanotechnol. (published online 2015).
http://dx.doi.org/10.1038/nnano.2015.112
41.
41. M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “ Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating,” Nat. Commun. 5, 4651 (2014).
http://dx.doi.org/10.1038/ncomms5651
42.
42. J. Zhang, H. J. Liu, L. Cheng, J. Wei, J. H. Liang, D. D. Fan, J. Shi, X. F. Tang, and Q. J. Zhang, “ Phosphorene nanoribbon as a promising candidate for thermoelectric applications,” Sci. Rep. 4, 6452 (2014).
http://dx.doi.org/10.1038/srep06452
43.
43. L. Kou, T. Frauenheim, and C. Chen, “ Phosphorene as a superior gas sensor: Selective adsorption and distinct I–V response,” J. Phys. Chem. Lett. 5, 26752681 (2014).
http://dx.doi.org/10.1021/jz501188k
44.
44. J. Sun, G. Zheng, H-W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, and Y. Cui, “ Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle–graphite composite battery anodes,” Nano Lett. 14, 45734580 (2014).
http://dx.doi.org/10.1021/nl501617j
45.
45. D. Hanlon, C. Backes, E. Doherty, C. S. Cucinotta, N. C. Berner, C. Boland, K. Lee, P. Lynch, Z. Gholamvand, A. Harvey et al., “ Liquid exfoliation of solvent-stabilised black phosphorus: applications beyond electronics,” e-print arXiv:1501.01881.
46.
46. S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “ Broadband nonlinear optical response in multi-layer black phosphorus: An emerging infrared and mid-infrared optical material,” Opt. Express 23, 1118311194 (2015).
http://dx.doi.org/10.1364/OE.23.011183
47.
47. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “ Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23, 1282312833 (2015).
http://dx.doi.org/10.1364/OE.23.012823
48.
48. T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “ Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90, 075434 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.075434
49.
49. T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “ Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70, S41S49 (2000).
http://dx.doi.org/10.1007/s003400000331
50.
50. M. Haiml, R. Grange, and U. Keller, “ Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331339 (2004).
http://dx.doi.org/10.1007/s00340-004-1535-1
51.
51. R. Grange, M. Haiml, R. Paschotta, G. J. Spuhler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “ New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151158 (2005).
http://dx.doi.org/10.1007/s00340-004-1622-3
52.
52. H. Yang, X. Feng, Q. Wang, H. Huang, W. Chen, A. T. S. Wee, and W. Ji, “ Giant two-photon absorption in bilayer graphene,” Nano Lett. 11, 26222627 (2011).
http://dx.doi.org/10.1021/nl200587h
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/5/10.1063/1.4927673
Loading
/content/aip/journal/apl/107/5/10.1063/1.4927673
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/5/10.1063/1.4927673
2015-08-06
2016-12-03

Abstract

Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation. The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/5/1.4927673.html;jsessionid=o3KPxvWjwY7atlUUE81sI2S3.x-aip-live-06?itemId=/content/aip/journal/apl/107/5/10.1063/1.4927673&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/5/10.1063/1.4927673&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/5/10.1063/1.4927673'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,