Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/5/10.1063/1.4928041
1.
1. J. A. Rogers, T. Someya, and Y. G. Huang, Science 327(5973), 1603 (2010).
http://dx.doi.org/10.1126/science.1182383
2.
2. T. Sekitani and T. Someya, Adv. Mater. 22(20), 2228 (2010).
http://dx.doi.org/10.1002/adma.200904054
3.
3. S. W. Hwang, H. Tao, D. H. Kim, H. Y. Cheng, J. K. Song, E. Rill, M. A. Brenckle, B. Panilaitis, S. M. Won, Y. S. Kim, Y. M. Song, K. J. Yu, A. Ameen, R. Li, Y. W. Su, M. M. Yang, D. L. Kaplan, M. R. Zakin, M. J. Slepian, Y. G. Huang, F. G. Omenetto, and J. A. Rogers, Science 337(6102), 1640 (2012).
http://dx.doi.org/10.1126/science.1226325
4.
4. D. H. Kim, N. S. Lu, R. Ma, Y. S. Kim, R. H. Kim, S. D. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T. I. Kim, R. Chowdhury, M. Ying, L. Z. Xu, M. Li, H. J. Chung, H. Keum, M. McCormick, P. Liu, Y. W. Zhang, F. G. Omenetto, Y. G. Huang, T. Coleman, and J. A. Rogers, Science 333(6044), 838 (2011).
http://dx.doi.org/10.1126/science.1206157
5.
5. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, Nat. Mater. 8(6), 494 (2009).
http://dx.doi.org/10.1038/nmat2459
6.
6. D. Y. Khang, H. Q. Jiang, Y. Huang, and J. A. Rogers, Science 311(5758), 208 (2006).
http://dx.doi.org/10.1126/science.1121401
7.
7. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. G. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, Science 320(5875), 507 (2008).
http://dx.doi.org/10.1126/science.1154367
8.
8. S. K. Lee, B. J. Kim, H. Jang, S. C. Yoon, C. Lee, B. H. Hong, J. A. Rogers, J. H. Cho, and J. H. Ahn, Nano Lett. 11(11), 4642 (2011).
http://dx.doi.org/10.1021/nl202134z
9.
9. S. H. Chae, W. J. Yu, J. J. Bae, D. L. Duong, D. Perello, H. Y. Jeong, Q. H. Ta, T. H. Ly, Q. A. Vu, M. Yun, X. Duan, and Y. H. Lee, Nat. Mater. 12(5), 403 (2013).
http://dx.doi.org/10.1038/nmat3572
10.
10. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, Nature 499(7459), 458 (2013).
http://dx.doi.org/10.1038/nature12314
11.
11. H. S. Wu, S. Kustra, E. M. Gates, and C. J. Bettinger, Org. Electron. 14(6), 1636 (2013).
http://dx.doi.org/10.1016/j.orgel.2013.02.037
12.
12. A. Chortos, J. Lim, J. W. F. To, M. Vosgueritchian, T. J. Dusseault, T.-H. Kim, S. Hwang, and Z. Bao, Adv. Mater. 26(25), 4253 (2014).
http://dx.doi.org/10.1002/adma.201305462
13.
13. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science 287(5453), 637 (2000).
http://dx.doi.org/10.1126/science.287.5453.637
14.
14. D. J. Lipomi, M. Vosgueritchian, B. C. K. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. N. Bao, Nat. Nanotechnol. 6(12), 788 (2011).
http://dx.doi.org/10.1038/nnano.2011.184
15.
15. T. Durkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, Nano Lett. 4(1), 35 (2004).
http://dx.doi.org/10.1021/nl034841q
16.
16. F. Xu, M.-Y. Wu, N. S. Safron, S. S. Roy, R. M. Jacobberger, D. J. Bindl, J.-H. Seo, T.-H. Chang, Z. Ma, and M. S. Arnold, Nano Lett. 14(2), 682 (2014).
http://dx.doi.org/10.1021/nl403941a
17.
17. J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, Nat. Mater. 7(11), 900 (2008).
http://dx.doi.org/10.1038/nmat2291
18.
18. J. Lee, L. G. Kaake, J. H. Cho, X. Y. Zhu, T. P. Lodge, and C. D. Frisbie, J. Phys. Chem. C 113(20), 8972 (2009).
http://dx.doi.org/10.1021/jp901426e
19.
19. M. J. Ha, Y. Xia, A. A. Green, W. Zhang, M. J. Renn, C. H. Kim, M. C. Hersam, and C. D. Frisbie, ACS Nano 4(8), 4388 (2010).
http://dx.doi.org/10.1021/nn100966s
20.
20. J. Pu, Y. Yomogida, K. K. Liu, L. J. Li, Y. Iwasa, and T. Takenobu, Nano Lett. 12(8), 4013 (2012).
http://dx.doi.org/10.1021/nl301335q
21.
21.See supplementary material at http://dx.doi.org/10.1063/1.4928041 for experimental details; nanotube quantum capacitance calculations; characterization of the buckling and delamination of the ion gel films; and failure analysis of the individual components.[Supplementary Material]
22.
22. E. K. Hobbie, D. O. Simien, J. A. Fagan, J. Y. Huh, J. Y. Chung, S. D. Hudson, J. Obrzut, J. F. Douglas, and C. M. Stafford, Phys. Rev. Lett. 104, 125505 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.125505
23.
23. J. M. Harris, J. Y. Huh, M. R. Semler, T. Ihle, C. M. Stafford, S. D. Hudson, J. A. Fagan, and E. K. Hobbie, Soft Matter 9, 11568 (2013).
http://dx.doi.org/10.1039/c3sm51878g
24.
24. O. Akogwu, D. Kwabi, S. Midturi, M. Eleruja, B. Babatope, and W. O. Soboyejo, Mater. Sci. Eng., B 170(1–3), 32 (2010).
http://dx.doi.org/10.1016/j.mseb.2010.02.023
25.
25. V. K. Sangwan, R. P. Ortiz, J. M. P. Alaboson, J. D. Emery, M. J. Bedzyk, L. J. Lauhon, T. J. Marks, and M. C. Hersam, ACS Nano 6(8), 7480 (2012).
http://dx.doi.org/10.1021/nn302768h
26.
26. G. J. Brady, Y. Joo, M.-Y. Wu, M. J. Shea, P. Gopalan, and M. S. Arnold, ACS Nano 8(11), 11614 (2014).
http://dx.doi.org/10.1021/nn5048734
27.
27. W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, and H. Dai, Nano Lett. 3(2), 193 (2003).
http://dx.doi.org/10.1021/nl0259232
28.
28. H. Numata, K. Ihara, T. Saito, H. Endoh, and F. Nihey, Appl. Phys. Express 5(5), 055102 (2012).
http://dx.doi.org/10.1143/APEX.5.055102
29.
29. P. Chen, Y. Fu, R. Aminirad, C. Wang, J. Zhang, K. Wang, K. Galatsis, and C. Zhou, Nano Lett. 11(12), 5301 (2011).
http://dx.doi.org/10.1021/nl202765b
30.
30. J. Lee, W. Kim, and W. Kim, ACS Appl. Mater. Interfaces 6(16), 13578 (2014).
http://dx.doi.org/10.1021/am502953g
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/5/10.1063/1.4928041
Loading
/content/aip/journal/apl/107/5/10.1063/1.4928041
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/5/10.1063/1.4928041
2015-08-05
2016-12-10

Abstract

Deformable field-effect transistors (FETs) are expected to facilitate new technologies like stretchable displays, conformal devices, and electronic skins. We previously demonstrated stretchable FETs based on buckled thin films of polyfluorene-wrapped semiconducting single-walled carbon nanotubes as the channel, buckled metal films as electrodes, and unbuckled flexible ion gel films as the dielectric. The FETs were stretchable up to 50% without appreciable degradation in performance before failure of the ion gel film. Here, we show that by buckling the ion gel, the integrity and performance of the nanotube FETs are extended to nearly 90% elongation, limited by the stretchability of the elastomer substrate. The FETs maintain an on/off ratio of >104 and a field-effect mobility of 5 cm2 V−1 s−1 under elongation and demonstrate invariant performance over 1000 stretching cycles.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/5/1.4928041.html;jsessionid=i6phHiR0IMDaiNwmydnyXjVd.x-aip-live-02?itemId=/content/aip/journal/apl/107/5/10.1063/1.4928041&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/5/10.1063/1.4928041&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/5/10.1063/1.4928041'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,