Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. A. Rogers, T. Someya, and Y. G. Huang, Science 327(5973), 1603 (2010).
2. T. Sekitani and T. Someya, Adv. Mater. 22(20), 2228 (2010).
3. S. W. Hwang, H. Tao, D. H. Kim, H. Y. Cheng, J. K. Song, E. Rill, M. A. Brenckle, B. Panilaitis, S. M. Won, Y. S. Kim, Y. M. Song, K. J. Yu, A. Ameen, R. Li, Y. W. Su, M. M. Yang, D. L. Kaplan, M. R. Zakin, M. J. Slepian, Y. G. Huang, F. G. Omenetto, and J. A. Rogers, Science 337(6102), 1640 (2012).
4. D. H. Kim, N. S. Lu, R. Ma, Y. S. Kim, R. H. Kim, S. D. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T. I. Kim, R. Chowdhury, M. Ying, L. Z. Xu, M. Li, H. J. Chung, H. Keum, M. McCormick, P. Liu, Y. W. Zhang, F. G. Omenetto, Y. G. Huang, T. Coleman, and J. A. Rogers, Science 333(6044), 838 (2011).
5. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, Nat. Mater. 8(6), 494 (2009).
6. D. Y. Khang, H. Q. Jiang, Y. Huang, and J. A. Rogers, Science 311(5758), 208 (2006).
7. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. G. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, Science 320(5875), 507 (2008).
8. S. K. Lee, B. J. Kim, H. Jang, S. C. Yoon, C. Lee, B. H. Hong, J. A. Rogers, J. H. Cho, and J. H. Ahn, Nano Lett. 11(11), 4642 (2011).
9. S. H. Chae, W. J. Yu, J. J. Bae, D. L. Duong, D. Perello, H. Y. Jeong, Q. H. Ta, T. H. Ly, Q. A. Vu, M. Yun, X. Duan, and Y. H. Lee, Nat. Mater. 12(5), 403 (2013).
10. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, Nature 499(7459), 458 (2013).
11. H. S. Wu, S. Kustra, E. M. Gates, and C. J. Bettinger, Org. Electron. 14(6), 1636 (2013).
12. A. Chortos, J. Lim, J. W. F. To, M. Vosgueritchian, T. J. Dusseault, T.-H. Kim, S. Hwang, and Z. Bao, Adv. Mater. 26(25), 4253 (2014).
13. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science 287(5453), 637 (2000).
14. D. J. Lipomi, M. Vosgueritchian, B. C. K. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. N. Bao, Nat. Nanotechnol. 6(12), 788 (2011).
15. T. Durkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, Nano Lett. 4(1), 35 (2004).
16. F. Xu, M.-Y. Wu, N. S. Safron, S. S. Roy, R. M. Jacobberger, D. J. Bindl, J.-H. Seo, T.-H. Chang, Z. Ma, and M. S. Arnold, Nano Lett. 14(2), 682 (2014).
17. J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, Nat. Mater. 7(11), 900 (2008).
18. J. Lee, L. G. Kaake, J. H. Cho, X. Y. Zhu, T. P. Lodge, and C. D. Frisbie, J. Phys. Chem. C 113(20), 8972 (2009).
19. M. J. Ha, Y. Xia, A. A. Green, W. Zhang, M. J. Renn, C. H. Kim, M. C. Hersam, and C. D. Frisbie, ACS Nano 4(8), 4388 (2010).
20. J. Pu, Y. Yomogida, K. K. Liu, L. J. Li, Y. Iwasa, and T. Takenobu, Nano Lett. 12(8), 4013 (2012).
21.See supplementary material at for experimental details; nanotube quantum capacitance calculations; characterization of the buckling and delamination of the ion gel films; and failure analysis of the individual components.[Supplementary Material]
22. E. K. Hobbie, D. O. Simien, J. A. Fagan, J. Y. Huh, J. Y. Chung, S. D. Hudson, J. Obrzut, J. F. Douglas, and C. M. Stafford, Phys. Rev. Lett. 104, 125505 (2010).
23. J. M. Harris, J. Y. Huh, M. R. Semler, T. Ihle, C. M. Stafford, S. D. Hudson, J. A. Fagan, and E. K. Hobbie, Soft Matter 9, 11568 (2013).
24. O. Akogwu, D. Kwabi, S. Midturi, M. Eleruja, B. Babatope, and W. O. Soboyejo, Mater. Sci. Eng., B 170(1–3), 32 (2010).
25. V. K. Sangwan, R. P. Ortiz, J. M. P. Alaboson, J. D. Emery, M. J. Bedzyk, L. J. Lauhon, T. J. Marks, and M. C. Hersam, ACS Nano 6(8), 7480 (2012).
26. G. J. Brady, Y. Joo, M.-Y. Wu, M. J. Shea, P. Gopalan, and M. S. Arnold, ACS Nano 8(11), 11614 (2014).
27. W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, and H. Dai, Nano Lett. 3(2), 193 (2003).
28. H. Numata, K. Ihara, T. Saito, H. Endoh, and F. Nihey, Appl. Phys. Express 5(5), 055102 (2012).
29. P. Chen, Y. Fu, R. Aminirad, C. Wang, J. Zhang, K. Wang, K. Galatsis, and C. Zhou, Nano Lett. 11(12), 5301 (2011).
30. J. Lee, W. Kim, and W. Kim, ACS Appl. Mater. Interfaces 6(16), 13578 (2014).

Data & Media loading...


Article metrics loading...



Deformable field-effect transistors (FETs) are expected to facilitate new technologies like stretchable displays, conformal devices, and electronic skins. We previously demonstrated stretchable FETs based on buckled thin films of polyfluorene-wrapped semiconducting single-walled carbon nanotubes as the channel, buckled metal films as electrodes, and unbuckled flexible ion gel films as the dielectric. The FETs were stretchable up to 50% without appreciable degradation in performance before failure of the ion gel film. Here, we show that by buckling the ion gel, the integrity and performance of the nanotube FETs are extended to nearly 90% elongation, limited by the stretchability of the elastomer substrate. The FETs maintain an on/off ratio of >104 and a field-effect mobility of 5 cm2 V−1 s−1 under elongation and demonstrate invariant performance over 1000 stretching cycles.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd