Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/5/10.1063/1.4928181
1.
1. M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, New J. Phys. 10, 105011 (2008).
http://dx.doi.org/10.1088/1367-2630/10/10/105011
2.
2. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, Chem. Rev. 111, 3913 (2011).
http://dx.doi.org/10.1021/cr200061k
3.
3. S. A. Maier, Plasmonics: Fundamentals and Applications ( Springer, New York, 2007).
4.
4. U. Leonhardt and T. Philbin, Geometry and Light. The Science of Invisibility ( Dover Publications, Mineola, New York, 2010).
5.
5. J. B. Khurgin, Nat. Nanotechnol. 10, 2 (2015).
http://dx.doi.org/10.1038/nnano.2014.310
6.
6. A. J. Hoffman, L. Alexeev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, Nat. Mater. 6, 946 (2007).
http://dx.doi.org/10.1038/nmat2033
7.
7. F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, Nano Lett. 11, 3370 (2011).
http://dx.doi.org/10.1021/nl201771h
8.
8. J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon et al., Nature 487, 77 (2012).
http://dx.doi.org/10.1038/nature11254
9.
9. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez et al., Nature 487, 82 (2012).
http://dx.doi.org/10.1038/nature11253
10.
10. L. Gu, J. Livenery, G. Zhu, E. E. Narimanov, and M. A. Noginov, Appl. Phys. Lett. 103, 021104 (2013).
http://dx.doi.org/10.1063/1.4813240
11.
11. T. U. Tumkur, J. K. Kitur, L. Gu, G. Zhu, and M. A. Noginov, Abstracts of NANOMETA 2013 ( Seefeld, Austria, 2013), p. FRI3o.6.
12.
12. B. D. Fainberg, J. Chem. Phys. 109, 4523 (1998).
http://dx.doi.org/10.1063/1.477056
13.
13. G. Li, M. S. Shishodia, B. D. Fainberg, B. Apter, M. Oren, A. Nitzan, and M. Ratner, Nano Lett. 12, 2228 (2012).
http://dx.doi.org/10.1021/nl204130d
14.
14. B. D. Fainberg, in Advances in Multiphoton Processes and Spectroscopy, edited by S. H. Lin, A. A. Villaeys, and Y. Fujimura ( World Scientific, Singapore, New Jersey, London, 2003), Vol. 15, pp. 215374.
15.
15. S. Mukamel, Principles of Nonlinear Optical Spectroscopy ( Oxford University Press, New York, 1995).
16.
16. B. D. Fainberg, Opt. Spectrosc. 68, 305 (1990)
16. B. D. Fainberg, [Opt. Spektrosk. 68, 525 (1990)].
17.
17. B. Fainberg, Phys. Rev. A 48, 849 (1993).
http://dx.doi.org/10.1103/PhysRevA.48.849
18.
18. B. D. Fainberg, Chem. Phys. 148, 33 (1990).
http://dx.doi.org/10.1016/0301-0104(90)89004-A
19.
19. B. D. Fainberg and B. Levinsky, Adv. Phys. Chem. 2010, 798419.
http://dx.doi.org/10.1155/2010/798419
20.
20. M. Abramowitz and I. Stegun, Handbook on Mathematical Functions ( Dover, New York, 1964).
21.
21. A. A. Batista and D. S. Citrin, Phys. Rev. Lett. 92, 127404 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.127404
22.
22. S. Mukamel and D. Abramavicius, Chem. Rev. 104, 2073 (2004).
http://dx.doi.org/10.1021/cr020681b
23.
23. H. Thomann, L. R. Dalton, M. Grabowski, and T. C. Clarke, Phys. Rev. B 31, 3141 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.3141
24.
24. A. White, M. Galperina, B. Apter, and B. D. Fainberg, “ Optical processes in organic materials and nanostructures II,” Proc. SPIE 8827, 88270C (2013).
http://dx.doi.org/10.1117/12.2023581
25.
25. A. S. Davydov, Theory of Molecular Excitons ( Plenum, New York, 1971).
26.
26.See supplementary material at http://dx.doi.org/10.1063/1.4928181 for derivation of Eq. (1) and for integral equation for non-equilibrium population difference .[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/5/10.1063/1.4928181
Loading
/content/aip/journal/apl/107/5/10.1063/1.4928181
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/5/10.1063/1.4928181
2015-08-05
2016-09-26

Abstract

Purely organic materials with negative and near-zero dielectric permittivity can be easily fabricated. Here, we develop a theory of nonlinear non-steady-state organic plasmonics with strong laser pulses that enable us to obtain near-zero dielectric permittivity during a short time. Our consideration is based on the model of the interaction of strong (phase modulated) laser pulse with organic molecules developed by one of the authors before, extended to the dipole-dipole intermolecular interactions in the condensed matter. We have proposed to use non-steady-state organic plasmonics for the enhancement of intersite dipolar energy-transfer interaction in the quantum dot wire that influences on electron transport through nanojunctions. Such interactions can compensate Coulomb repulsions for particular conditions. We propose the exciton control of Coulomb blocking in the quantum dot wire based on the non-steady-state near-zero dielectric permittivity of the organic host medium.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/5/1.4928181.html;jsessionid=Zcm132WNFBJRUI95MS_6aCqk.x-aip-live-03?itemId=/content/aip/journal/apl/107/5/10.1063/1.4928181&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/5/10.1063/1.4928181&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/5/10.1063/1.4928181'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,