Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. Liu, Y. Xu, and Y.-Y. Noh, Mater. Today 18(2), 7996 (2015).
2. M. Muccini, Nat. Mater. 5(8), 605613 (2006).
3. H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, Solid-State Electron. 47(2), 297301 (2003).
4. T. Minari, T. Miyadera, K. Tsukagoshi, T. Hamano, Y. Aoyagi, R. Yasuda, K. Nomoto, T. Nemoto, and S. Isoda, Appl. Phys. Lett. 91(6), 063506 (2007).
5. L. Herlogsson, X. Crispin, S. Tierney, and M. Berggren, Adv. Mater. 23(40), 46844689 (2011).
6. K. Shibata, K. Ishikawa, H. Takezoe, H. Wada, and T. Mori, Appl. Phys. Lett. 92(2), 023305 (2008).
7. Y. Xu, C. Liu, H. Sun, F. Balestra, G. Ghibaudo, W. Scheideler, and Y.-Y. Noh, Org. Electron. 15(8), 17381744 (2014).
8. A. Kumatani, Y. Li, P. Darmawan, T. Minari, and K. Tsukagoshi, Sci. Rep. 3, 1026 (2013).
9. C.-W. Chu, S.-H. Li, C.-W. Chen, V. Shrotriya, and Y. Yang, Appl. Phys. Lett. 87(19), 193508 (2005).
10. P. Darmawan, T. Minari, Y. Xu, S. L. Li, H. Song, M. Chan, and K. Tsukagoshi, Adv. Funct. Mater. 22(21), 45774583 (2012).
11. X. Cheng, Y. Y. Noh, J. Wang, M. Tello, J. Frisch, R. P. Blum, A. Vollmer, J. P. Rabe, N. Koch, and H. Sirringhaus, Adv. Funct. Mater. 19(15), 24072415 (2009).
12. R. C. Naber, C. Tanase, P. W. Blom, G. H. Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh, and D. M. De Leeuw, Nat. Mater. 4(3), 243248 (2005).
13. R. C. Naber, K. Asadi, P. W. Blom, D. M. de Leeuw, and B. de Boer, Adv. Mater. 22(9), 933945 (2010).
14. T. N. Ng, D. E. Schwartz, L. L. Lavery, G. L. Whiting, B. Russo, B. Krusor, J. Veres, P. Bröms, L. Herlogsson, and N. Alam, Sci. Rep. 2, 585 (2012).
15. A. Laudari and S. Guha, J. Appl. Phys. 117(10), 105501 (2015).
16. H. Sun, Q. Wang, Y. Li, Y.-F. Lin, Y. Wang, Y. Yin, Y. Xu, C. Liu, K. Tsukagoshi, L. Pan, X. Wang, Z. Hu, and Y. Shi, Sci. Rep. 4, 7227 (2014).
17. Y. J. Park, I.-s. Bae, S. J. Kang, J. Chang, and C. Park, IEEE Trans. Dielectr. Electr. Insul. 17(4), 11351163 (2010).
18. D. Mao, M. Quevedo-Lopez, H. Stiegler, B. Gnade, and H. Alshareef, Org. Electron. 11(5), 925932 (2010).
19. Y. Xu, R. Gwoziecki, I. Chartier, R. Coppard, F. Balestra, and G. Ghibaudo, Appl. Phys. Lett. 97(6), 063302 (2010).
20. T. Minari, T. Miyadera, K. Tsukagoshi, Y. Aoyagi, and H. Ito, Appl. Phys. Lett. 91(5), 053508 (2007).
21. S. Wang, Y. Yan, and K. Tsukagoshi, Appl. Phys. Lett. 97(6), 063307 (2010).
22. M. Kano, T. Minari, and K. Tsukagoshi, Appl. Phys. Lett. 94(14), 143304 (2009).
23. J. Zaumseil, K. W. Baldwin, and J. A. Rogers, J. Appl. Phys. 93(10), 61176124 (2003).
24. S. Wang, T. Minari, T. Miyadera, K. Tsukagoshi, and Y. Aoyagi, Appl. Phys. Lett. 91(20), 203508 (2007).
25. P. Necliudov, M. Shur, D. Gundlach, and T. Jackson, J. Appl. Phys. 88(11), 65946597 (2000).
26. D. K. Schroder, Semiconductor Material and Device Characterization ( John Wiley & Sons, 2006).
27. G. Horowitz, M. E. Hajlaoui, and R. Hajlaoui, J. Appl. Phys. 87(9), 44564463 (2000).
28. P. Sharma, D. Wu, S. Poddar, T. J. Reece, S. Ducharme, and A. Gruverman, J. Appl. Phys. 110(5), 052010 (2011).
29. K. Matsushige, H. Yamada, H. Tanaka, T. Horiuchi, and X. Chen, Nanotechnology 9(3), 208 (1998).
30. V. Bystrov, N. Bystrova, E. Paramonova, G. Vizdrik, A. Sapronova, M. Kuehn, H. Kliem, and A. Kholkin, J. Phys.: Condens. Matter 19(45), 456210 (2007).
31. S. Fabiano, S. Braun, M. Fahlman, X. Crispin, and M. Berggren, Adv. Funct. Mater. 24(5), 695700 (2014).
32. C. Liu, Y. Xu, Y. Li, W. Scheideler, and T. Minari, J. Phys. Chem. C 117(23), 1233712345 (2013).

Data & Media loading...


Article metrics loading...



The reduction of contact resistance in ferroelectric organic field-effect transistors (Fe-OFETs) by buffering the interfacial polarization fluctuation was reported. An ultrathin poly(methyl methacrylate) layer was inserted between the ferroelectric polymer and organic semiconductor layers. The contact resistance was significantly reduced to 55 kΩ cm. By contrast, Fe-OFETs without buffering exhibited a significantly larger contact resistance of 260 kΩ cm. Results showed that such an enhanced charge injection was attributed to the buffering effect at the semiconductor/ferroelectric interface, which narrowed the trap distribution of the organic semiconductor in the contact region. The presented work provided an efficient method of lowering the contact resistance in Fe-OFETs, which is beneficial for the further development of Fe-OFETs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd