Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/5/10.1063/1.4928534
1.
1. C. Liu, Y. Xu, and Y.-Y. Noh, Mater. Today 18(2), 7996 (2015).
http://dx.doi.org/10.1016/j.mattod.2014.08.037
2.
2. M. Muccini, Nat. Mater. 5(8), 605613 (2006).
http://dx.doi.org/10.1038/nmat1699
3.
3. H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, Solid-State Electron. 47(2), 297301 (2003).
http://dx.doi.org/10.1016/S0038-1101(02)00210-1
4.
4. T. Minari, T. Miyadera, K. Tsukagoshi, T. Hamano, Y. Aoyagi, R. Yasuda, K. Nomoto, T. Nemoto, and S. Isoda, Appl. Phys. Lett. 91(6), 063506 (2007).
http://dx.doi.org/10.1063/1.2767987
5.
5. L. Herlogsson, X. Crispin, S. Tierney, and M. Berggren, Adv. Mater. 23(40), 46844689 (2011).
http://dx.doi.org/10.1002/adma.201101757
6.
6. K. Shibata, K. Ishikawa, H. Takezoe, H. Wada, and T. Mori, Appl. Phys. Lett. 92(2), 023305 (2008).
http://dx.doi.org/10.1063/1.2834374
7.
7. Y. Xu, C. Liu, H. Sun, F. Balestra, G. Ghibaudo, W. Scheideler, and Y.-Y. Noh, Org. Electron. 15(8), 17381744 (2014).
http://dx.doi.org/10.1016/j.orgel.2014.05.006
8.
8. A. Kumatani, Y. Li, P. Darmawan, T. Minari, and K. Tsukagoshi, Sci. Rep. 3, 1026 (2013).
http://dx.doi.org/10.1038/srep01026
9.
9. C.-W. Chu, S.-H. Li, C.-W. Chen, V. Shrotriya, and Y. Yang, Appl. Phys. Lett. 87(19), 193508 (2005).
http://dx.doi.org/10.1063/1.2126140
10.
10. P. Darmawan, T. Minari, Y. Xu, S. L. Li, H. Song, M. Chan, and K. Tsukagoshi, Adv. Funct. Mater. 22(21), 45774583 (2012).
http://dx.doi.org/10.1002/adfm.201201094
11.
11. X. Cheng, Y. Y. Noh, J. Wang, M. Tello, J. Frisch, R. P. Blum, A. Vollmer, J. P. Rabe, N. Koch, and H. Sirringhaus, Adv. Funct. Mater. 19(15), 24072415 (2009).
http://dx.doi.org/10.1002/adfm.200900315
12.
12. R. C. Naber, C. Tanase, P. W. Blom, G. H. Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh, and D. M. De Leeuw, Nat. Mater. 4(3), 243248 (2005).
http://dx.doi.org/10.1038/nmat1329
13.
13. R. C. Naber, K. Asadi, P. W. Blom, D. M. de Leeuw, and B. de Boer, Adv. Mater. 22(9), 933945 (2010).
http://dx.doi.org/10.1002/adma.200900759
14.
14. T. N. Ng, D. E. Schwartz, L. L. Lavery, G. L. Whiting, B. Russo, B. Krusor, J. Veres, P. Bröms, L. Herlogsson, and N. Alam, Sci. Rep. 2, 585 (2012).
http://dx.doi.org/10.1038/srep00585
15.
15. A. Laudari and S. Guha, J. Appl. Phys. 117(10), 105501 (2015).
http://dx.doi.org/10.1063/1.4914415
16.
16. H. Sun, Q. Wang, Y. Li, Y.-F. Lin, Y. Wang, Y. Yin, Y. Xu, C. Liu, K. Tsukagoshi, L. Pan, X. Wang, Z. Hu, and Y. Shi, Sci. Rep. 4, 7227 (2014).
http://dx.doi.org/10.1038/srep07227
17.
17. Y. J. Park, I.-s. Bae, S. J. Kang, J. Chang, and C. Park, IEEE Trans. Dielectr. Electr. Insul. 17(4), 11351163 (2010).
http://dx.doi.org/10.1109/TDEI.2010.5539685
18.
18. D. Mao, M. Quevedo-Lopez, H. Stiegler, B. Gnade, and H. Alshareef, Org. Electron. 11(5), 925932 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.02.012
19.
19. Y. Xu, R. Gwoziecki, I. Chartier, R. Coppard, F. Balestra, and G. Ghibaudo, Appl. Phys. Lett. 97(6), 063302 (2010).
http://dx.doi.org/10.1063/1.3479476
20.
20. T. Minari, T. Miyadera, K. Tsukagoshi, Y. Aoyagi, and H. Ito, Appl. Phys. Lett. 91(5), 053508 (2007).
http://dx.doi.org/10.1063/1.2759987
21.
21. S. Wang, Y. Yan, and K. Tsukagoshi, Appl. Phys. Lett. 97(6), 063307 (2010).
http://dx.doi.org/10.1063/1.3479531
22.
22. M. Kano, T. Minari, and K. Tsukagoshi, Appl. Phys. Lett. 94(14), 143304 (2009).
http://dx.doi.org/10.1063/1.3115826
23.
23. J. Zaumseil, K. W. Baldwin, and J. A. Rogers, J. Appl. Phys. 93(10), 61176124 (2003).
http://dx.doi.org/10.1063/1.1568157
24.
24. S. Wang, T. Minari, T. Miyadera, K. Tsukagoshi, and Y. Aoyagi, Appl. Phys. Lett. 91(20), 203508 (2007).
http://dx.doi.org/10.1063/1.2813640
25.
25. P. Necliudov, M. Shur, D. Gundlach, and T. Jackson, J. Appl. Phys. 88(11), 65946597 (2000).
http://dx.doi.org/10.1063/1.1323534
26.
26. D. K. Schroder, Semiconductor Material and Device Characterization ( John Wiley & Sons, 2006).
27.
27. G. Horowitz, M. E. Hajlaoui, and R. Hajlaoui, J. Appl. Phys. 87(9), 44564463 (2000).
http://dx.doi.org/10.1063/1.373091
28.
28. P. Sharma, D. Wu, S. Poddar, T. J. Reece, S. Ducharme, and A. Gruverman, J. Appl. Phys. 110(5), 052010 (2011).
http://dx.doi.org/10.1063/1.3623765
29.
29. K. Matsushige, H. Yamada, H. Tanaka, T. Horiuchi, and X. Chen, Nanotechnology 9(3), 208 (1998).
http://dx.doi.org/10.1088/0957-4484/9/3/011
30.
30. V. Bystrov, N. Bystrova, E. Paramonova, G. Vizdrik, A. Sapronova, M. Kuehn, H. Kliem, and A. Kholkin, J. Phys.: Condens. Matter 19(45), 456210 (2007).
http://dx.doi.org/10.1088/0953-8984/19/45/456210
31.
31. S. Fabiano, S. Braun, M. Fahlman, X. Crispin, and M. Berggren, Adv. Funct. Mater. 24(5), 695700 (2014).
http://dx.doi.org/10.1002/adfm.201302070
32.
32. C. Liu, Y. Xu, Y. Li, W. Scheideler, and T. Minari, J. Phys. Chem. C 117(23), 1233712345 (2013).
http://dx.doi.org/10.1021/jp4023844
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/5/10.1063/1.4928534
Loading
/content/aip/journal/apl/107/5/10.1063/1.4928534
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/5/10.1063/1.4928534
2015-08-07
2016-09-28

Abstract

The reduction of contact resistance in ferroelectric organic field-effect transistors (Fe-OFETs) by buffering the interfacial polarization fluctuation was reported. An ultrathin poly(methyl methacrylate) layer was inserted between the ferroelectric polymer and organic semiconductor layers. The contact resistance was significantly reduced to 55 kΩ cm. By contrast, Fe-OFETs without buffering exhibited a significantly larger contact resistance of 260 kΩ cm. Results showed that such an enhanced charge injection was attributed to the buffering effect at the semiconductor/ferroelectric interface, which narrowed the trap distribution of the organic semiconductor in the contact region. The presented work provided an efficient method of lowering the contact resistance in Fe-OFETs, which is beneficial for the further development of Fe-OFETs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/5/1.4928534.html;jsessionid=Q27oLImUiIzu4jg7Xv3N_y1E.x-aip-live-02?itemId=/content/aip/journal/apl/107/5/10.1063/1.4928534&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/5/10.1063/1.4928534&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/5/10.1063/1.4928534'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,