Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/6/10.1063/1.4928501
1.
1. T. E. Mallouk and A. Sen, Sci. Am. 300, 72 (2009).
http://dx.doi.org/10.1038/scientificamerican0509-72
2.
2. Z. Wu, T. Li, J. Li, W. Gao, T. Xu, C. Christianson, W. Gao, M. Galarnyk, Q. He, L. Zhang, and J. Wang, ACS Nano 8, 12041 (2014).
http://dx.doi.org/10.1021/nn506200x
3.
3. Z. Wu, T. Li, W. Gao, T. Xu, B. Jurado-Sánchez, J. Li, W. Gao, Q. He, L. Zhang, and J. Wang, Adv. Funct. Mater. 25, 3881 (2015).
http://dx.doi.org/10.1002/adfm.201501050
4.
4. J. G. Gibbs and Y. P. Zhao, Front. Mater. Sci. 5, 25 (2011).
http://dx.doi.org/10.1007/s11706-011-0120-x
5.
5. W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St. Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004).
http://dx.doi.org/10.1021/ja047697z
6.
6. Y. Wang, R. M. Hernandez, D. J. Bartlett, Jr., J. M. Bingham, T. R. Kline, A. Sen, and T. E. Mallouk, Langmuir 22, 10451 (2006).
http://dx.doi.org/10.1021/la0615950
7.
7. R. Laocharoensuk, J. Burdick, and J. Wang, ACS Nano. 2, 1069 (2008).
http://dx.doi.org/10.1021/nn800154g
8.
8. U. K. Demirok, R. Laocharoensuk, K. M. Manesh, and J. Wang, Angew. Chem. Int. Ed. 47, 9349 (2008).
http://dx.doi.org/10.1002/anie.200803841
9.
9. G. A. Ozin, I. Manners, S. Fournier-Bidoz, and A. Arsenault, Adv. Mater. 17, 3011 (2005).
http://dx.doi.org/10.1002/adma.200501767
10.
10. J. Burdick, R. Laocharoensuk, P. M. Wheat, J. D. Posner, and J. Wang, J. Am. Chem. Soc. 130, 8164 (2008).
http://dx.doi.org/10.1021/ja803529u
11.
11. S. Sattayasamitsathit, W. Gao, P. Calvo-Marzal, K. M. Manesh, and J. Wang, Chem. Phys. Chem. 11, 2802 (2010).
http://dx.doi.org/10.1002/cphc.201000348
12.
12. S. Fournier-Bidoz, A. C. Arsenault, I. Manners, and G. A. Ozin, Chem. Commun. 41, 441 (2005).
http://dx.doi.org/10.1039/B414896G
13.
13. D. Rudolph, L. Schweickert, S. Morkötter, B. Loitsch, S. Hertenberger, J. Becker, M. Bichler, G. Abstreiter, J. J. Finley, and G. Koblmüller, Appl. Phys. Lett. 105, 033111 (2014).
http://dx.doi.org/10.1063/1.4891427
14.
14. J. G. Gibbs and Y. P. Zhao, Appl. Phys. Lett. 94, 163104 (2009).
http://dx.doi.org/10.1063/1.3122346
15.
15. M. Manjare, B. Yang, and Y. P. Zhao, Phys. Rev. Lett. 109, 128305 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.128305
16.
16. M. Manjare, Y. T. Wu, B. Yang, and Y. P. Zhao, Appl. Phys. Lett. 104, 054102 (2014).
http://dx.doi.org/10.1063/1.4863952
17.
17. W. Gao, M. D'Agostino, V. Garcia-Gradilla, J. Orozco, and J. Wang, Small 9, 467 (2013).
http://dx.doi.org/10.1002/smll.201201864
18.
18. W. Gao, A. Pei, X. Feng, C. Hennessy, and J. Wang, J. Am. Chem. Soc. 135, 998 (2013).
http://dx.doi.org/10.1021/ja311455k
19.
19. J. R. Howse, R. A. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.048102
20.
20. L. Baraban, D. Makarov, R. Streubel, I. Mönch, D. Grimm, S. Sanchez, and O. G. Schmidt, ACS Nano 6, 3383 (2012).
http://dx.doi.org/10.1021/nn300413p
21.
21. J. G. Gibbs, N. A. Fragnito, and Y. P. Zhao, Appl. Phys. Lett. 97, 253107 (2010).
http://dx.doi.org/10.1063/1.3529448
22.
22. W. Gao, S. Sattayasamitsathit, J. Orozco, and J. Wang, J. Am. Chem. Soc. 133, 11862 (2011).
http://dx.doi.org/10.1021/ja203773g
23.
23. W. Gao, S. Sattayasamitsathit, J. Orozco, and J. Wang, Nanoscale 5, 8909 (2013).
http://dx.doi.org/10.1039/c3nr03254j
24.
24. A. A. Solovev, Y. Mei, E. B. Ureña, G. Huang, and O. G. Schmidt, Small 5, 1688 (2009).
http://dx.doi.org/10.1002/smll.200900021
25.
25. T. Xu, F. Soto, W. Gao, V. Garcia-Gradilla, J. Li, X. Zhang, and J. Wang, J. Am. Chem. Soc. 136, 8552 (2014).
http://dx.doi.org/10.1021/ja504150e
26.
26. G. Huang, J. Wang, and Y. Mei, J. Mater. Chem. 22, 6519 (2012).
http://dx.doi.org/10.1039/c2jm16813h
27.
27. Z. Wu, X. Lin, Y. Wu, T. Si, J. Sun, and Q. He, ACS Nano 8, 6097 (2014).
http://dx.doi.org/10.1021/nn501407r
28.
28. J. G. S. Moo, H. Wang, G. Zhao, and M. Pumera, Chem. Eur. J. 20, 4292 (2014).
http://dx.doi.org/10.1002/chem.201304804
29.
29. E. L. K. Chng, G. Zhao, and M. Pumera, Nanoscale 6, 2119 (2014).
http://dx.doi.org/10.1039/C3NR04997C
30.
30. W. Liu, R. He, H. Zhu, H. Hu, M. Li, and X. Zhao, Appl. Phys. Lett. 96, 053114 (2010).
http://dx.doi.org/10.1063/1.3308480
31.
31. C. Strelow, S. Kietzmann, A. Schramm, R. Seher, J. P. Penttinen, T. V. Hakkarainen, A. Mews, and T. Kipp, Appl. Phys. Lett. 101, 113114 (2012).
http://dx.doi.org/10.1063/1.4752449
32.
32. B. Li, Q. Wang, E. Wang, Z. Jia, Y. Yan, Z. Bian, X. Ren, S. Cai, and Y. Huang, Appl. Phys. Lett. 103, 051909 (2013).
http://dx.doi.org/10.1063/1.4817518
33.
33. J. Li, G. Huang, M. Ye, M. Li, R. Liu, and Y. Mei, Nanoscale 3, 5083 (2011).
http://dx.doi.org/10.1039/c1nr10840a
34.
34. M. Manjare, B. Yang, and Y. P. Zhao, J. Phys. Chem. C 117, 4657 (2013).
http://dx.doi.org/10.1021/jp311977d
35.
35. L. Li, J. Wang, T. Li, W. Song, and G. Zhang, Soft Matter 10, 7511 (2014).
http://dx.doi.org/10.1039/C4SM01070A
36.
36. L. Li, J. Wang, T. Li, W. Song, and G. Zhang, J. Appl. Phys. 117, 104308 (2015).
http://dx.doi.org/10.1063/1.4915114
37.
37. G. Rückner and R. Kapral, Phys. Rev. Lett. 98, 150603 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.150603
38.
38. Y. Tao and R. Kapral, J. Chem. Phys. 128, 164518 (2008).
http://dx.doi.org/10.1063/1.2908078
39.
39. A. Malevanets and R. Kapral, J. Chem. Phys. 110, 8605 (1999).
http://dx.doi.org/10.1063/1.478857
40.
40. A. Malevanets and R. Kapral, J. Chem. Phys. 112, 7260 (2000).
http://dx.doi.org/10.1063/1.481289
41.
41. A. Malevanets and R. Kapral, Lect. Notes Phys. 640, 116 (2004).
http://dx.doi.org/10.1007/978-3-540-39895-0_4
42.
42. Y. G. Tao and R. Kapral, Chem. Phys. Chem. 10, 770 (2009).
http://dx.doi.org/10.1002/cphc.200800829
43.
43. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids ( Oxford University Press, New York, 1987).
44.
44.See supplementary material at http://dx.doi.org/10.1063/1.4928501 for the videos of the motion trajectory of nanowire motors obtained from numerical simulation (Video 1) and experiments (Video 2) as a function of time as they move in a solvent.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/6/10.1063/1.4928501
Loading
/content/aip/journal/apl/107/6/10.1063/1.4928501
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/6/10.1063/1.4928501
2015-08-11
2016-12-08

Abstract

Physical insights on the hydrodynamics and locomotion of self-propelled nanowire motor under nonequilibrium steady state are investigated using finite element method in accordance with hybrid molecular dynamics/multiparticle collision dynamics and rigid body dynamics. Nanowire motor is discretized into finite segments, and forces of solvent molecule acting on the motor are assumed to be the sum of forces acting on all segments of the motor. We show that the locomotion of nanowire motor is mainly determined by the imbalance forces acting on the catalytic and noncatalytic segments. The average velocity along the axis increases significantly as a function of time prior to reaching equilibrium. The length of nanowire motor shows negligible effect on the velocity of the motor. Preliminary experimental results are provided to validate the current model.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/6/1.4928501.html;jsessionid=2HNuI7cboScfsgQ79vA0-nRR.x-aip-live-03?itemId=/content/aip/journal/apl/107/6/10.1063/1.4928501&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/6/10.1063/1.4928501&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/6/10.1063/1.4928501'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,