Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/6/10.1063/1.4928554
1.
1. H. Sirringhaus, Adv. Mater. 21, 3859 (2009).
http://dx.doi.org/10.1002/adma.200901136
2.
2. R. C. G. Naber, C. Tanase, P. W. M. Blom, G. H. Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh, and D. M. de Leeuw, Nat. Mater. 4, 243 (2005);
http://dx.doi.org/10.1038/nmat1329
2. Y. Guo, C.-a. Di, S. Ye, X. Sun, J. Zheng, Y. Wen, W. Wu, G. Yu, and Y. Liu, Adv. Mater. 21, 1954 (2009);
http://dx.doi.org/10.1002/adma.200802430
2. X. Ren and P. K. L. Chan, Appl. Phys. Lett. 104, 113302 (2014);
http://dx.doi.org/10.1063/1.4869308
2. P. Cosseddu, S. Lai, G. Casula, L. Raffo, and A. Bonfiglio, Org. Electron. 15, 3595 (2014);
http://dx.doi.org/10.1016/j.orgel.2014.09.037
2. Y.-C. Chiu, T.-Y. Chen, Y. Chen, T. Satoh, T. Kakuchi, and W.-C. Chen, ACS Appl. Mater. Interfaces 6, 12780 (2014).
http://dx.doi.org/10.1021/am502732d
3.
3. P. Cosseddu, J.-O. Vogel, B. Fraboni, J. P. Rabe, N. Koch, and A. Bonfiglio, Adv. Mater. 21, 344 (2009).
http://dx.doi.org/10.1002/adma.200800373
4.
4. G. Gelinck, P. Heremans, K. Nomoto, and T. D. Anthopoulos, Adv. Mater. 22, 3778 (2010).
http://dx.doi.org/10.1002/adma.200903559
5.
5. S. Goffri, C. Müller, N. Stingelin-Stutzmann, D. W. Breiby, C. P. Radano, J. W. Andreasen, R. Thompson, R. A. J. Janssen, M. M. Nielsen, P. Smith, and H. Sirringhaus, Nat. Mater. 5, 950 (2006).
http://dx.doi.org/10.1038/nmat1779
6.
6. G. Lu, J. Blakesley, S. Himmelberger, P. Pingel, J. Frisch, I. Lieberwirth, I. Salzmann, M. Oehzelt, R. Di Pietro, A. Salleo, N. Koch, and D. Neher, Nat. Commun. 4, 1588 (2013).
http://dx.doi.org/10.1038/ncomms2587
7.
7. K.-J. Baeg, Y.-Y. Noh, H. Sirringhaus, and D.-Y. Kim, Adv. Funct. Mater. 20, 224 (2010);
http://dx.doi.org/10.1002/adfm.200901677
7. K.-J. Baeg, D. Khim, J. Kim, B.-D. Yang, M. Kang, S.-W. Jung, I.-K. You, D.-Y. Kim, and Y.-Y. Noh, Adv. Funct. Mater 22, 2915 (2012);
http://dx.doi.org/10.1002/adfm.201200290
7. J.-C. Hsu, W.-Y. Lee, H.-C. Wu, K. Sugiyama, A. Hirao, and W.-C. Chen, J. Mater. Chem. 22, 5820 (2012);
http://dx.doi.org/10.1039/c2jm16039k
7. Y.-H. Chou, Y.-C. Chiu, W.-Y. Lee, and W.-C. Chen, Chem. Commun. 51, 2562 (2015).
http://dx.doi.org/10.1039/C4CC09667C
8.
8. Q. Wei, Y. Lin, E. R. Anderson, A. L. Briseno, S. P. Gido, and J. J. Watkins, ACS Nano 6, 1188 (2012);
http://dx.doi.org/10.1021/nn203847r
8. H.-Y. Chi, H.-W. Hsu, S.-H. Tung, and C.-L. Liu, ACS Appl. Mater. Interfaces 7, 5663 (2015).
http://dx.doi.org/10.1021/acsami.5b00338
9.
9. W. Wang, J. Han, J. Ying, L. Xiang, and W. Xie, Appl. Phys. Lett. 105, 123303 (2014);
http://dx.doi.org/10.1063/1.4896665
9. Y.-C. Chiu, I. Otsuka, S. Halila, R. Borsali, and W.-C. Chen, Adv. Funct. Mater. 24, 4240 (2014).
http://dx.doi.org/10.1002/adfm.201304297
10.
10. T. B. Singh, N. Marjanoviæ, G. J. Matt, N. S. Sariciftci, R. Schwödiauer, and S. Bauer, Appl. Phys. Lett. 85, 5409 (2004);
http://dx.doi.org/10.1063/1.1828236
10. K.-J. Baeg, Y.-Y. Noh, J. Ghim, S.-J. Kang, H. Lee, and D.-Y. Kim, Adv. Mater. 18, 3179 (2006).
http://dx.doi.org/10.1002/adma.v18:23
11.
11. X.-J. She, J. Liu, J.-Y. Zhang, X. Gao, and S.-D. Wang, Appl. Phys. Lett. 103, 143302 (2013).
http://dx.doi.org/10.1063/1.4824213
12.
12. A. Salleo, F. Endicott, and R. A. Street, Appl. Phys. Lett. 86, 263505 (2005);
http://dx.doi.org/10.1063/1.1968437
12. S. J. Zilker, C. Detcheverry, E. Cantatore, and D. M. de Leeuw, Appl. Phys. Lett. 79, 1124 (2001);
http://dx.doi.org/10.1063/1.1394718
12. B. Lee, A. Wan, D. Mastrogiovanni, J. E. Anthony, E. Garfunkel, and V. Podzorov, Phys. Rev. B 82, 085302 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085302
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/6/10.1063/1.4928554
Loading
/content/aip/journal/apl/107/6/10.1063/1.4928554
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/6/10.1063/1.4928554
2015-08-12
2016-09-25

Abstract

Blending the conjugated polymer poly(3-hexylthiophene) (P3HT) with the insulating electret polystyrene (PS), we show that the threshold voltage of organic field-effect transistors (OFETs) can be easily and reversely tuned by applying a gate bias stress at 130 °C. It is proposed that this phenomenon is caused by thermally activated charge injection from P3HT into PS matrix, and that this charge is immobilized within the PS matrix after cooling down to room temperature. Therefore, room-temperature hysteresis-free FETs with desired can be easily achieved. The approach is applied to reversely tune the OFET mode of operation from accumulation to depletion, and to build inverters.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/6/1.4928554.html;jsessionid=iF2-JlDDgH_zL0yIM4XQHaV2.x-aip-live-06?itemId=/content/aip/journal/apl/107/6/10.1063/1.4928554&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/6/10.1063/1.4928554&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/6/10.1063/1.4928554'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,