Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
2. S. Günes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. 107, 1324 (2007).
3. A. Facchetti, Mater. Today 16, 123 (2013).
4. S. Fabiano, Z. Chen, S. Vahedi, A. Facchetti, B. Pignataro, and M. A. Loi, J. Mater. Chem. 21, 5891 (2011).
5. M. Schubert, D. Dolfen, J. Frisch, S. Roland, R. Steyrleuthner, B. Stiller, Z. Chen, U. Scherf, N. Koch, A. Facchetti, and D. Neher, Adv. Energy Mater. 2, 369 (2012).
6. C. Mu, P. Liu, W. Ma, K. Jiang, J. Zhao, K. Zhang, Z. Chen, Z. Wei, Y. Yi, J. Wang, S. Yang, F. Huang, A. Facchetti, H. Ade, and H. Yan, Adv. Mater. 26, 7224 (2014).
7. K. D. Deshmukh, T. Qin, J. K. Gallaher, A. C. Y. Liu, E. Gann, K. O′Donnell, L. Thomsen, J. M. Hodgkiss, S. E. Watkins, and C. R. McNeill, Energy Environ Sci. 8, 332 (2015).
8. Y. Zhou, T. Kurosawa, W. Ma, Y. Guo, L. Fang, K. Vandewal, Y. Diao, C. Wang, Q. Yan, J. Reinspach, J. Mei, A. L. Appleton, G. I. Koleilat, Y. Gao, S. C. B. Mannsfeld, A. Salleo, H. Ade, D. Zhao, and Z. Bao, Adv. Mater. 26, 3767 (2014).
9. D. Mori, H. Benten, H. Ohikita, and S. Ito, Adv. Energy Mater. 5, 1500304 (2015).
10. N. M. Murari, M. J. Crane, T. Earmme, Y.-J. Hwang, and S. A. Jenekhe, Appl. Phys. Lett. 104, 223906 (2014).
11. P. Cheng, L. Ye, X. Zhao, J. Hou, Y. Li, and X. Zhan, Energy Envrion. Sci. 7, 1351 (2014).
12. T. Earmme, Y.-J. Hwang, S. Subramaniyan, and S. A. Jenekhe, Adv. Mater. 26, 6080 (2014).
13. X. Huang, J. Peng, K. Lu, Z. Liu, Z. Wu, J. Yuan, J. Lu, H.-Q. Wang, and W. Ma, Appl. Phys. Lett. 104, 211602 (2014).
14. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, Nat. Commun. 4, 1446 (2013).
15. J. A. Bartelt, J. D. Douglas, W. R. Mateker, A. E. Labban, C. J. Tassone, M. F. Toney, J. M. J. Frechet, P. M. Beaujuge, and M. D. McGehee, Adv. Energy Mater. 4, 1301733 (2014).
16. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics 3, 297 (2009).
17. J. R. Moore, S. Albert-Seifried, A. Rao, S. Massip, B. Watts, D. J. Morgan, R. H. Friend, C. R. McNeill, and H. Sirringhaus, Adv. Energy Mater. 1, 230 (2011).
18. A. Zusan, B. Gieseking, M. Zerson, V. Dyakonov, R. Magerle, and C. Deibel, Sci. Rep. 5, 8286 (2015).
19. X. Guo, M. Zhang, W. Ma, L. Ye, S. Zhang, S. Liu, H. Ade, F. Hunag, and J. Hou, Adv. Mater. 26, 4043 (2014).
20. M. Schubert, B. A. Collins, H. Mangold, I. A. Howard, W. Schindler, K. Vandewal, S. Roland, J. Behrends, F. Kraffert, R. Steyrleuthner, Z. Chen, K. Fostiropoulos, R. Bittl, A. Salleo, A. Facchetti, F. Laquai, H. W. Ade, and D. Neher, Adv. Funct. Mater. 24, 4068 (2014).
21. P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, Adv. Mater. 19, 1551 (2007).
22. D. H. Wang, P.-O. Morin, C.-L. Lee, A. K. K. Kyaw, M. Leclerc, and A. J. Heeger, J. Mater. Chem. A 2, 15052 (2014).
23. S. R. Cowan, R. A. Street, S. Cho, and A. J. Heeger, Phys. Rev. B 83, 035205 (2011).
24. M. Lenes, M. Morana, C. J. Brabec, and P. W. M. Blom, Adv. Funct. Mater. 19, 1106 (2009).
25. J. W. Jung, J. W. Jo, C.-C. Chueh, F. Liu, W. H. Jo, T. P. Russell, and A. K.-Y. Jen, Adv. Mater. 27, 3310 (2015).
26. P. Schilinsky, C. Waldauf, and C. J. Brabec, Appl. Phys. Lett. 81, 3885 (2002).
27. K. S. Nalwa, H. K. Kodali, B. Ganapathysubramanian, and S. Chaudhary, Appl. Phys. Lett. 99, 263301 (2011).
28. A. Dualeh, T. Moehl, N. Tetreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, ACS Nano 8, 362 (2014).
29. R. Casalini, S. W. Tsang, J. J. Deininger, F. A. Arroyave, J. R. Reynolds, and F. So, J. Phys. Chem. C 117, 13798 (2013).

Data & Media loading...


Article metrics loading...



Bulk heterojunction all-polymer solar cells, fabricated with poly{[4,8-bis-(2-ethyl-hexyl-thiophene-5-yl)-benzo[1,2-:4,5-]dithiophene-2,6-diyl]--[2-(2-ethyl-hexanoyl)-thieno[3,4-]thiophen-4,6-diyl]} (PBDTTT-CT) as a donor polymer, and a acceptor polymer, poly{[N,N′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)} (P(NDI2OD-T2)), have been demonstrated and have achieved a power conversion efficiency exceeding 3.7% by using 1,8-diiodooctane (DIO) as a processing additive. Based on the analysis of charge carrier dynamics (charge generation, separation, and extraction), we found that the appropriate ratio of processing solvent additive (5 vol. % DIO) leads to enhanced device performance and favorable morphological characteristics. This research, therefore, indicates that the incorporation of a DIO additive in all-polymer blends is an effective way to form a morphologically ideal heterojunction network and thereby improve charge carrier kinetics for efficient photovoltaic devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd