Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/7/10.1063/1.4927851
1.
1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
http://dx.doi.org/10.1126/science.264.5158.553
2.
2. Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, Appl. Phys. Lett. 92, 101105 (2008).
http://dx.doi.org/10.1063/1.2894569
3.
3. P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, Nat. Photonics 4, 95 (2010).
http://dx.doi.org/10.1038/nphoton.2009.262
4.
4. Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, Nat. Photonics 4, 99 (2010).
http://dx.doi.org/10.1038/nphoton.2009.263
5.
5. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Appl. Phys. Lett. 70, 2670 (1997).
http://dx.doi.org/10.1063/1.119208
6.
6. C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, Appl. Phys. Lett. 79, 572 (2001).
http://dx.doi.org/10.1063/1.1383806
7.
7. A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, IEEE J. Quantum Electron. 44, 1083 (2008).
http://dx.doi.org/10.1109/JQE.2008.2001928
8.
8. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, Appl. Phys. B 90, 165 (2008).
http://dx.doi.org/10.1007/s00340-007-2846-9
9.
9. M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, Appl. Phys. B 110, 233 (2013).
http://dx.doi.org/10.1007/s00340-012-5080-z
10.
10. A. Kosterev and F. Tittel, IEEE J. Quantum Electron. 38, 582 (2002).
http://dx.doi.org/10.1109/JQE.2002.1005408
11.
11. P. Patimisco, G. Scamarcio, F. Tittel, and V. Spagnolo, Sensors 14, 6165 (2014).
http://dx.doi.org/10.3390/s140406165
12.
12. B. Mizaikoff, Chem. Soc. Rev. 42, 8683 (2013).
http://dx.doi.org/10.1039/c3cs60173k
13.
13. Y.-C. Chang, P. Wägli, V. Paeder, A. Homsy, L. Hvozdara, P. van der Wal, J. D. Francesco, N. F. de Rooij, and H. P. Herzig, Lab Chip 12, 3020 (2012).
http://dx.doi.org/10.1039/c2lc40601b
14.
14. M. Sieger, F. Balluff, X. Wang, S.-S. Kim, L. Leidner, G. Gauglitz, and B. Mizaikoff, Anal. Chem. 85, 3050 (2013).
http://dx.doi.org/10.1021/ac302551s
15.
15. R. Shankar, I. Bulu, and M. Lončar, Appl. Phys. Lett. 102, 051108 (2013).
http://dx.doi.org/10.1063/1.4791558
16.
16. N. Fabricius, G. Gauglitz, and J. Ingenhoff, Sens. Actuators, B 7, 672 (1992).
http://dx.doi.org/10.1016/0925-4005(92)80384-A
17.
17. L. Gendron, M. Carras, A. Huynh, V. Ortiz, C. Koeniguer, and V. Berger, Appl. Phys. Lett. 85, 2824 (2004).
http://dx.doi.org/10.1063/1.1781731
18.
18. M. Graf, N. Hoyler, M. Giovannini, J. Faist, and D. Hofstetter, Appl. Phys. Lett. 88, 241118 (2006).
http://dx.doi.org/10.1063/1.2210088
19.
19. H. Schneider, C. Schonbein, M. Walther, K. Schwarz, J. Fleissner, and P. Koidl, Appl. Phys. Lett. 71, 246 (1997).
http://dx.doi.org/10.1063/1.119510
20.
20. D. Hofstetter, M. Beck, and J. Faist, Appl. Phys. Lett. 81, 2683 (2002).
http://dx.doi.org/10.1063/1.1512954
21.
21. B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, Appl. Phys. Lett. 101, 191109 (2012).
http://dx.doi.org/10.1063/1.4767128
22.
22. B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, Nat. Commun. 5, 4085 (2014).
http://dx.doi.org/10.1038/ncomms5085
23.
23. D. Ristanic, B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, W. Schrenk, and G. Strasser, Appl. Phys. Lett. 106, 041101 (2015).
http://dx.doi.org/10.1063/1.4906802
24.
24. Y. Zou, K. Vijayraghavan, P. Wray, S. Chakravarty, M. A. Belkin, and R. T. Chen, in Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 2015.
25.
25. O. Baumgartner, Z. Stanojevic, and H. Kosina, in Monte Carlo Methods and Applications, edited by K. K. Sabelfeld and I. Dimov ( De Gruyter Borovets, Bulgaria, 2012), Vol. 59, p. 67.
26.
26. P. Reininger, B. Schwarz, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, Appl. Phys. Lett. 105, 091108 (2014).
http://dx.doi.org/10.1063/1.4894767
27.
27. M. Beck, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, IEEE Photonics Technol. Lett. 12, 1450 (2000).
http://dx.doi.org/10.1109/68.887653
28.
28. A. Delga, L. Doyennette, M. Carras, V. Trinité, and P. Bois, Appl. Phys. Lett. 102, 163507 (2013).
http://dx.doi.org/10.1063/1.4803447
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/7/10.1063/1.4927851
Loading
/content/aip/journal/apl/107/7/10.1063/1.4927851
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/7/10.1063/1.4927851
2015-08-17
2016-12-04

Abstract

An improved bi-functional quantum cascade laser and detector emitting and detecting around is demonstrated. The design allows a significantly higher laser performance, showing that bi-functional designs can achieve a comparable pulsed performance to conventional quantum cascade lasers. In particular, the device has a threshold current density of , an output power of , and a total wall-plug efficiency of 4.5% in pulsed mode. Optimized electron extraction and the prevention of thermal backfilling allow higher duty cycles, operation up to 10%, with average output power at room temperature without optimization of the laser cavity or coatings. At zero bias, the device has a responsivity of around and a noise equivalent power of at room temperature, which in on-chip configuration outperforms conventional uncooled discrete detectors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/7/1.4927851.html;jsessionid=5fB08Yg3rJjbI-RoOmHhrcLU.x-aip-live-06?itemId=/content/aip/journal/apl/107/7/10.1063/1.4927851&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/7/10.1063/1.4927851&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/7/10.1063/1.4927851'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,