Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
2. Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, Appl. Phys. Lett. 92, 101105 (2008).
3. P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, Nat. Photonics 4, 95 (2010).
4. Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, Nat. Photonics 4, 99 (2010).
5. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Appl. Phys. Lett. 70, 2670 (1997).
6. C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, Appl. Phys. Lett. 79, 572 (2001).
7. A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, IEEE J. Quantum Electron. 44, 1083 (2008).
8. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, Appl. Phys. B 90, 165 (2008).
9. M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, Appl. Phys. B 110, 233 (2013).
10. A. Kosterev and F. Tittel, IEEE J. Quantum Electron. 38, 582 (2002).
11. P. Patimisco, G. Scamarcio, F. Tittel, and V. Spagnolo, Sensors 14, 6165 (2014).
12. B. Mizaikoff, Chem. Soc. Rev. 42, 8683 (2013).
13. Y.-C. Chang, P. Wägli, V. Paeder, A. Homsy, L. Hvozdara, P. van der Wal, J. D. Francesco, N. F. de Rooij, and H. P. Herzig, Lab Chip 12, 3020 (2012).
14. M. Sieger, F. Balluff, X. Wang, S.-S. Kim, L. Leidner, G. Gauglitz, and B. Mizaikoff, Anal. Chem. 85, 3050 (2013).
15. R. Shankar, I. Bulu, and M. Lončar, Appl. Phys. Lett. 102, 051108 (2013).
16. N. Fabricius, G. Gauglitz, and J. Ingenhoff, Sens. Actuators, B 7, 672 (1992).
17. L. Gendron, M. Carras, A. Huynh, V. Ortiz, C. Koeniguer, and V. Berger, Appl. Phys. Lett. 85, 2824 (2004).
18. M. Graf, N. Hoyler, M. Giovannini, J. Faist, and D. Hofstetter, Appl. Phys. Lett. 88, 241118 (2006).
19. H. Schneider, C. Schonbein, M. Walther, K. Schwarz, J. Fleissner, and P. Koidl, Appl. Phys. Lett. 71, 246 (1997).
20. D. Hofstetter, M. Beck, and J. Faist, Appl. Phys. Lett. 81, 2683 (2002).
21. B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, Appl. Phys. Lett. 101, 191109 (2012).
22. B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, Nat. Commun. 5, 4085 (2014).
23. D. Ristanic, B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, W. Schrenk, and G. Strasser, Appl. Phys. Lett. 106, 041101 (2015).
24. Y. Zou, K. Vijayraghavan, P. Wray, S. Chakravarty, M. A. Belkin, and R. T. Chen, in Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 2015.
25. O. Baumgartner, Z. Stanojevic, and H. Kosina, in Monte Carlo Methods and Applications, edited by K. K. Sabelfeld and I. Dimov ( De Gruyter Borovets, Bulgaria, 2012), Vol. 59, p. 67.
26. P. Reininger, B. Schwarz, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, Appl. Phys. Lett. 105, 091108 (2014).
27. M. Beck, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, IEEE Photonics Technol. Lett. 12, 1450 (2000).
28. A. Delga, L. Doyennette, M. Carras, V. Trinité, and P. Bois, Appl. Phys. Lett. 102, 163507 (2013).

Data & Media loading...


Article metrics loading...



An improved bi-functional quantum cascade laser and detector emitting and detecting around is demonstrated. The design allows a significantly higher laser performance, showing that bi-functional designs can achieve a comparable pulsed performance to conventional quantum cascade lasers. In particular, the device has a threshold current density of , an output power of , and a total wall-plug efficiency of 4.5% in pulsed mode. Optimized electron extraction and the prevention of thermal backfilling allow higher duty cycles, operation up to 10%, with average output power at room temperature without optimization of the laser cavity or coatings. At zero bias, the device has a responsivity of around and a noise equivalent power of at room temperature, which in on-chip configuration outperforms conventional uncooled discrete detectors.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd