Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/7/10.1063/1.4928492
1.
1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.3314
2.
2. H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, Proc. Natl. Acad. Sci. U.S.A. 100, 15318 (2003).
http://dx.doi.org/10.1073/pnas.2634328100
3.
3. I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013).
http://dx.doi.org/10.1103/RevModPhys.85.299
4.
4. A. Verger, C. Ciuti, and I. Carusotto, Phys. Rev. B 73, 193306 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.193306
5.
5. T. Gutbrod, M. Bayer, A. Forchel, J. P. Reithmaier, T. L. Reinecke, S. Rudin, and P. A. Knipp, Phys. Rev. B 57, 9950 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.9950
6.
6. D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, Phys. Rev. Lett. 100, 047401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.047401
7.
7. R. I. Kaitouni, O. El Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J. D. Ganière, J. L. Staehli et al., Phys. Rev. B 74, 155311 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.155311
8.
8. E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart et al., Nat. Phys. 6, 860 (2010).
http://dx.doi.org/10.1038/nphys1750
9.
9. H. S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Galopin, A. Lemaître, I. Sagnes, A. Amo, G. Malpuech et al., Phys. Rev. Lett. 110, 236601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.236601
10.
10. C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech et al., Nat. Commun. 5, 3278 (2014).
http://dx.doi.org/10.1038/ncomms4278
11.
11. D. Tanese, E. Gurevich, F. Baboux, T. Jacqmin, A. Lemaître, E. Galopin, I. Sagnes, A. Amo, J. Bloch, and E. Akkermans, Phys. Rev. Lett. 112, 146404 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.146404
12.
12. T. Boulier, M. Bamba, A. Amo, C. Adrados, A. Lemaître, E. Galopin, I. Sagnes, J. Bloch, C. Ciuti, E. Giacobino et al., Nat. Commun. 5, 3260 (2014).
http://dx.doi.org/10.1038/ncomms4260
13.
13. H. Nguyen, D. Gerace, I. Carusotto, D. Sanvitto, E. Galopin, A. Lemaître, I. Sagnes, J. Bloch, and A. Amo, Phys. Rev. Lett. 114, 036402 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.036402
14.
14. N. Y. Kim, K. Kusudo, C. Wu, N. Masumoto, A. Löffler, S. Höfling, N. Kumada, L. Worschech, A. Forchel, and Y. Yamamoto, Nat. Phys. 7, 681 (2011).
http://dx.doi.org/10.1038/nphys2012
15.
15. K. Winkler, J. Fischer, A. Schade, M. Amthor, R. Dall, J. Gessler, M. Emmerling, E. A. Ostrovskaya, M. Kamp, C. Schneider, and S. Höfling, New J. Phys. 17, 023001 (2015).
http://dx.doi.org/10.1088/1367-2630/17/2/023001
16.
16. T. C. H. Liew and V. Savona, Phys. Rev. Lett. 104, 183601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.183601
17.
17. M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, L. S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli et al., Nature 414, 731 (2001).
http://dx.doi.org/10.1038/414731a
18.
18. C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, Phys. Rev. B 58, 7926 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7926
19.
19. S. Klembt, E. Durupt, S. Datta, T. Klein, A. Baas, Y. Léger, C. Kruse, D. Hommel, A. Minguzzi, and M. Richard, Phys. Rev. Lett. 114, 186403 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.186403
20.
20. S. Klembt, H. Dartsch, M. Anastasescu, M. Gartner, and C. Kruse, Appl. Phys. Lett. 99, 151101 (2011).
http://dx.doi.org/10.1063/1.3644955
21.
21. K. Sebald, M. Seyfried, S. Klembt, S. Bley, A. Rosenauer, D. Hommel, and C. Kruse, Appl. Phys. Lett. 100, 161104 (2012).
http://dx.doi.org/10.1063/1.4704188
22.
22. S. Klembt, K. Frank, G. Qian, T. Klein, A. Rosenauer, D. Hommel, and C. Kruse, J. Cryst. Growth 378, 270 (2013).
http://dx.doi.org/10.1016/j.jcrysgro.2012.12.003
23.
23. G. V. Astakhov, D. R. Yakovlev, V. P. Kochereshko, W. Ossau, J. Nürnberger, W. Faschinger, and G. Landwehr, Phys. Rev. B 60, R8485 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.R8485
24.
24. M. Borselli, T. Johnson, and O. Painter, Opt. Express 13, 1515 (2005).
http://dx.doi.org/10.1364/OPEX.13.001515
25.
25. J. W. Bae, W. Zhao, J. H. Jang, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, J. Vac. Sci. Technol., B 21, 2888 (2003).
http://dx.doi.org/10.1116/1.1625956
26.
26. I.-H. Song, Y.-A. Peter, and M. Meunier, J. Micromech. Microeng. 17, 1593 (2007).
http://dx.doi.org/10.1088/0960-1317/17/8/023
27.
27. J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, New J. Phys. 14, 083014 (2012).
http://dx.doi.org/10.1088/1367-2630/14/8/083014
28.
28. J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel et al., Phys. Rev. B 85, 075318 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.075318
29.
29. M. Richard, J. Kasprzak, R. André, R. Romestain, L. S. Dang, G. Malpuech, and A. Kavokin, Phys. Rev. B 72, 201301 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.201301
30.
30. A. Trichet, E. Durupt, F. Mèdard, S. Datta, A. Minguzzi, and M. Richard, Phys. Rev. B 88, 121407(R) (2013).
http://dx.doi.org/10.1103/PhysRevB.88.121407
31.
31. T. K. Paraiso, D. Sarchi, G. Nardin, R. Cerna, B. Pietka, M. Richard, O. El Daif, F. Morier-Genoud, V. Savona, and B. Deveaud, Phys. Rev. B 79, 045319 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.045319
32.
32. M. Wouters, I. Carusotto, and C. Ciuti, Phys. Rev. B 77, 115340 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.115340
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/7/10.1063/1.4928492
Loading
/content/aip/journal/apl/107/7/10.1063/1.4928492
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/7/10.1063/1.4928492
2015-08-17
2016-09-30

Abstract

We have designed and fabricated all-epitaxial ZnSe-based optical micropillars exhibiting the strong coupling regime between the excitonic transition and the confined optical cavity modes. At cryogenic temperatures, under non-resonant pulsed optical excitation, we demonstrate single transverse mode polariton lasing operation in the micropillars. Owing to the high quality factors of these microstructures, the lasing threshold remains low even in micropillars of the smallest diameter. We show that this feature can be traced back to a sidewall roughness grain size below 3 nm and to suppressed in-plane polariton escape.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/7/1.4928492.html;jsessionid=uWoYNv-8Rk_RQO1bNXkr87Jl.x-aip-live-03?itemId=/content/aip/journal/apl/107/7/10.1063/1.4928492&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/7/10.1063/1.4928492&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/7/10.1063/1.4928492'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,