Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. A. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, Water Res. 45(3), 14811489 (2011).
2. W. Götz, N. M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler, Appl. Phys. Lett. 68(22), 3144 (1996).
3. R. Collazo, S. Mita, J. Xie, A. Rice, J. Tweedie, R. Dalmau, and Z. Sitar, Phys. Status Solidi C 8(7–8), 20312033 (2011).
4. X. T. Trinh, D. Nilsson, I. G. Ivanov, E. Janzén, A. Kakanakova-Georgieva, and N. T. Son, Appl. Phys. Lett. 105(16), 162106 (2014).
5. C. G. van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).
6. Q. Yan, A. Janotti, M. Scheffler, and C. G. Van de Walle, Appl. Phys. Lett. 105(11), 111104 (2014).
7. R. W. Martin, P. R. Edwards, K. P. O'Donnell, M. D. Dawson, C.-W. Jeon, C. Liu, G. R. Rice, and I. M. Watson, Phys. Status Solidi A 201(4), 665672 (2004).
8. G. Naresh-Kumar, J. Bruckbauer, P. R. Edwards, S. Kraeusel, B. Hourahine, R. W. Martin, M. A. Moram, S. Lovelock, R. A. Oliver, C. J. Humphreys, and C. Trager-Cowan, Microsc. Microanal. 20(1), 5560 (2014).
9. A. Knauer, V. Kueller, U. Zeimer, M. Weyers, C. Reich, and M. Kneissl, Phys. Status Solidi A 210(3), 451454 (2013).
10. C. J. Deatcher, K. Bejtka, R. W. Martin, S. Romani, H. Kheyrandish, L. M. Smith, S. A. Rushworth, C. Liu, M. G. Cheong, and I. M. Watson, Semicond. Sci. Technol. 21(9), 1287 (2006).
11. F. Mehnke, T. Wernicke, H. Pingel, C. Kuhn, C. Reich, V. Kueller, A. Knauer, M. Lapeyrade, M. Weyers, and M. Kneissl, Appl. Phys. Lett. 103(21), 212109 (2013).
12. J. Christen, M. Grundmann, and D. Bimberg, J. Vac. Sci. Technol., B 9(4), 23582368 (1991).
13. P. R. Edwards, R. W. Martin, K. P. O'Donnell, and I. M. Watson, Phys. Status Solidi C 0(7), 24742477 (2003).
14. P. R. Edwards, L. K. Jagadamma, J. Bruckbauer, C. Liu, P. Shields, D. Allsopp, T. Wang, and R. W. Martin, Microsc. Microanal. 18(6), 12121219 (2012).
15. D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, Scanning 29(3), 92101 (2007).
16. G. Naresh-Kumar, B. Hourahine, P. R. Edwards, A. P. Day, A. Winkelmann, A. J. Wilkinson, P. J. Parbrook, G. England, and C. Trager-Cowan, Phys. Rev. Lett. 108, 135503 (2012).
17. U. Zeimer, V. Kueller, A. Knauer, A. Mogilatenko, M. Weyers, and M. Kneissl, J. Cryst. Growth 377, 3236 (2013).
18. G. Kusch, H. Li, P. R. Edwards, J. Bruckbauer, T. C. Sadler, P. J. Parbrook, and R. W. Martin, Appl. Phys. Lett. 104(9), 092114 (2014).
19. E. Monroy, J. Zenneck, G. Cherkashinin, O. Ambacher, M. Hermann, M. Stutzmann, and M. Eickhoff, Appl. Phys. Lett. 88(7), 071906 (2006).
20. N. Nepal, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 89(9), 092107 (2006).
21. D. F. Hevia, C. Stampfl, F. Viñes, and F. Illas, Phys. Rev. B 88, 085202 (2013).
22. K. B. Nam, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 86(22), 222108 (2005).
23. U. Zeimer, A. Mogilatenko, V. Kueller, A. Knauer, and M. Weyers, J. Phys.: Conf. Ser. 471, 012021 (2013).
24. I. A. Ajia, P. R. Edwards, Z. Liu, J. C. Yan, R. W. Martin, and I. S. Roqan, Appl. Phys. Lett. 105(12), 122111 (2014).
25. B. Heying, E. J. Tarsa, C. R. Elsass, P. Fini, S. P. DenBaars, and J. S. Speck, J. Appl. Phys. 85(9), 64706476 (1999).
26. W. Qian, M. Skowronski, M. De Graef, K. Doverspike, L. B. Rowland, and D. K. Gaskill, Appl. Phys. Lett. 66(10), 1252 (1995).
27. J. Elsner, R. Jones, P. K. Sitch, V. D. Porezag, M. Elstner, Th. Frauenheim, M. I. Heggie, S. Öberg, and P. R. Briddon, Phys. Rev. Lett. 79(19), 36723675 (1997).
28. I. Belabbas, M. A. Belkhir, Y. H. Lee, J. Chen, A. Béré, P. Ruterana, and G. Nouet, Comput. Mater. Sci. 37(3), 410416 (2006).
29. A. H. Cottrell and B. A. Bilby, Proc. Phys. Soc., London, Sect. A 62(1), 4962 (1949).
30. A. F. Wright and J. Furthmüller, Appl. Phys. Lett. 72(26), 3467 (1998).
31. M. E. Hawkridge and D. Cherns, Appl. Phys. Lett. 87(22), 221903 (2005).
32. Z. G. Herro, D. Zhuang, R. Schlesser, and Z. Sitar, J. Cryst. Growth 312(18), 25192521 (2010).

Data & Media loading...


Article metrics loading...



A series of Si-doped AlN-rich AlGaN layers with low resistivities was characterized by a combination of nanoscale imaging techniques. Utilizing the capability of scanning electron microscopy to reliably investigate the same sample area with different techniques, it was possible to determine the effect of doping concentration, defect distribution, and morphology on the luminescence properties of these layers. Cathodoluminescence shows that the dominant defect luminescence depends on the Si-doping concentration. For lower doped samples, the most intense peak was centered between 3.36 eV and 3.39 eV, while an additional, stronger peak appears at 3 eV for the highest doped sample. These peaks were attributed to the (V-O)2− complex and the vacancy, respectively. Multimode imaging using cathodoluminescence, secondary electrons, electron channeling contrast, and atomic force microscopy demonstrates that the luminescence intensity of these peaks is not homogeneously distributed but shows a strong dependence on the topography and on the distribution of screw dislocations.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd