Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. F. H. C. Crick and A. Hughes, Exp. Cell Res. 1, 37 (1950).
2. S. B. Smith, L. Finzi, and C. Bustamante, Science 258, 1122 (1992).
3. J. A. Sidles, Appl. Phys. Lett. 58, 2854 (1991).
4. J. G. Longenecker, H. J. Mamin, A. W. Senko, L. Chen, C. T. Rettner, D. Rugar, and J. A. Marohn, ACS Nano 6, 9637 (2012).
5. A. I. Sidorov, R. J. McLean, B. A. Sexton, D. S. Gough, T. J. Davis, A. Akulshin, G. I. Opat, and P. Hannaford, C. R. Acad. Sci., Ser. IV 2, 565 (2001).
6. S. Whitlock, R. Gerritsma, T. Fernholz, and R. J. C. Spreeuw, New J. Phys. 11, 023021 (2009).
7. T. Davis, J. Opt. B: Quant. Semiclassical Opt. 1, 408 (1999).
8. Y. T. Xing, A. Eljaouhari, I. Barb, R. Gerritsma, R. J. C. Spreeuw, and J. B. Goedkoop, Phys. Status Solidi C 1, 3702 (2004).
9. Y. Xing, I. Barb, R. Gerritsma, R. Spreeuw, H. Luigjes, Q. Xiao, C. Rétif, and J. Goedkoop, J. Magn. Magn. Mater. 313, 192 (2007).
10. R. Gerritsma, S. Whitlock, T. Fernholz, H. Schlatter, J. Luigjes, J.-U. Thiele, J. Goedkoop, and R. Spreeuw, Phys. Rev. A 76, 033408 (2007).
11. V. Y. F. Leung, D. R. M. Pijn, H. Schlatter, L. Torralbo-Campo, A. L. La Rooij, G. B. Mulder, J. Naber, M. L. Soudijn, A. Tauschinsky, C. Abarbanel, B. Hadad, E. Golan, R. Folman, and R. J. C. Spreeuw, Rev. Sci. Instrum. 85, 053102 (2014).
12. S. Jose, P. Surendran, Y. Wang, I. Herrera, L. Krzemien, S. Whitlock, R. McLean, A. Sidorov, and P. Hannaford, Phys. Rev. A – At. Mol. Opt. Phys. 89, 051602 (2014).
13. C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar, Proc. Natl. Acad. Sci. U. S. A. 106, 1313 (2009);
13. M. Poggio and C. L. Degen, Nanotechnology 21, 342001 (2010).
14. B. Stipe, H. Mamin, T. Stowe, T. Kenny, and D. Rugar, Phys. Rev. Lett. 86, 2874 (2001).
15. N. Jenkins and L. DeFlores, J. Vac. Sci. Technol. B 22, 909 (2004);
15. M. Poggio, C. L. Degen, C. T. Rettner, H. J. Mamin, and D. Rugar, Appl. Phys. Lett. 90, 263111 (2007).
16. S. Rubanov and P. R. Munroe, J. Microsc. 214, 213 (2004);
16. L. Giannuzzi and F. Stevie, Micron 30, 197 (1999);
16. C. Rossel, P. Bauer, D. Zech, J. Hofer, M. Willemin, and H. Keller, J. Appl. Phys. 79, 8166 (1996).
17. W. K. Shen, J. H. Judy, and J.-P. Wang, J. Appl. Phys. 97, 10H301 (2005).
18. D. R. B. Chui, Y. Hishinuma, R. Budakian, H. Mamin, and T. Kenny, in Technical Digest 12th International Conference on Solid-State Sensors and Actuators (2003), pp. 11201123.
19. E. C. Heeres, A. J. Katan, M. H. van Es, A. F. Beker, M. Hesselberth, D. J. van der Zalm, and T. H. Oosterkamp, Rev. Sci. Instrum. 81, 023704 (2010).
20. J. P. Attané, D. Ravelosona, A. Marty, V. D. Nguyen, and L. Vila, Phys. Rev. B – Condens. Matter Mater. Phys. 84, 144418 (2011).
21. J. A. Marohn, R. Fainchtein, and D. D. Smith, Appl. Phys. Lett. 73, 3778 (1998).
22. J. P. Cleveland, S. Manne, D. Bocek, and P. K. Hansma, Rev. Sci. Instrum. 64, 403 (1993).
23. T. N. Ng, N. Jenkins, and J. Marohn, IEEE Trans. Magn. 42, 378 (2006).
24.See supplementary material at for a description of the different orientations in which magnets can be attached to cantilevers.[Supplementary Material]
25. A. Vinante, A. Kirste, A. den Haan, O. Usenko, G. Wijts, E. Jeffrey, P. Sonin, D. Bouwmeester, and T. H. Oosterkamp, Appl. Phys. Lett. 101, 123101 (2012).
26. P. C. Hammel, private communication (2009).
27. A. Vinante, G. Wijts, and O. Usenko, Nat. Commun. 2, 572 (2011).
28. R. Gerritsma, “ Permanent magnetic atom chips and Bose-Einstein condensation,” Ph.D. thesis, Universiteit van Amsterdam, 2007.
29. V. Y. F. Leung, A. Tauschinsky, N. J. Druten, and R. J. C. Spreeuw, Quantum Inf. Process. 10, 955 (2011).
30. I. Herrera, Y. Wang, P. Michaux, D. Nissen, P. Surendran, S. Juodkazis, S. Whitlock, R. McLean, A. Sidorov, M. Albrecht, and P. Hannaford, J. Phys. D: Appl. Phys. 48, 115002 (2015); e-print arXiv:1410.0528v2.

Data & Media loading...


Article metrics loading...



We investigate the degradation of the magnetic moment of a 300 nm thick FePt film induced by Focused Ion Beam (FIB) milling. A 1 m × 8 m rod is milled out of a film by a FIB process and is attached to a cantilever by electron beam induced deposition. Its magnetic moment is determined by frequency-shift cantilever magnetometry. We find that the magnetic moment of the rod is  = 1.1 ± 0.1 × 10−12 Am2, which implies that 70% of the magnetic moment is preserved during the FIB milling process. This result has important implications for atom trapping and magnetic resonance force microscopy, which are addressed in this paper.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd