Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/7/10.1063/1.4928929
1.
1. F. H. C. Crick and A. Hughes, Exp. Cell Res. 1, 37 (1950).
http://dx.doi.org/10.1016/0014-4827(50)90048-6
2.
2. S. B. Smith, L. Finzi, and C. Bustamante, Science 258, 1122 (1992).
http://dx.doi.org/10.1126/science.1439819
3.
3. J. A. Sidles, Appl. Phys. Lett. 58, 2854 (1991).
http://dx.doi.org/10.1063/1.104757
4.
4. J. G. Longenecker, H. J. Mamin, A. W. Senko, L. Chen, C. T. Rettner, D. Rugar, and J. A. Marohn, ACS Nano 6, 9637 (2012).
http://dx.doi.org/10.1021/nn3030628
5.
5. A. I. Sidorov, R. J. McLean, B. A. Sexton, D. S. Gough, T. J. Davis, A. Akulshin, G. I. Opat, and P. Hannaford, C. R. Acad. Sci., Ser. IV 2, 565 (2001).
http://dx.doi.org/10.1016/S1296-2147(01)01194-5
6.
6. S. Whitlock, R. Gerritsma, T. Fernholz, and R. J. C. Spreeuw, New J. Phys. 11, 023021 (2009).
http://dx.doi.org/10.1088/1367-2630/11/2/023021
7.
7. T. Davis, J. Opt. B: Quant. Semiclassical Opt. 1, 408 (1999).
http://dx.doi.org/10.1088/1464-4266/1/4/309
8.
8. Y. T. Xing, A. Eljaouhari, I. Barb, R. Gerritsma, R. J. C. Spreeuw, and J. B. Goedkoop, Phys. Status Solidi C 1, 3702 (2004).
http://dx.doi.org/10.1002/pssc.200405538
9.
9. Y. Xing, I. Barb, R. Gerritsma, R. Spreeuw, H. Luigjes, Q. Xiao, C. Rétif, and J. Goedkoop, J. Magn. Magn. Mater. 313, 192 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.12.025
10.
10. R. Gerritsma, S. Whitlock, T. Fernholz, H. Schlatter, J. Luigjes, J.-U. Thiele, J. Goedkoop, and R. Spreeuw, Phys. Rev. A 76, 033408 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.033408
11.
11. V. Y. F. Leung, D. R. M. Pijn, H. Schlatter, L. Torralbo-Campo, A. L. La Rooij, G. B. Mulder, J. Naber, M. L. Soudijn, A. Tauschinsky, C. Abarbanel, B. Hadad, E. Golan, R. Folman, and R. J. C. Spreeuw, Rev. Sci. Instrum. 85, 053102 (2014).
http://dx.doi.org/10.1063/1.4874005
12.
12. S. Jose, P. Surendran, Y. Wang, I. Herrera, L. Krzemien, S. Whitlock, R. McLean, A. Sidorov, and P. Hannaford, Phys. Rev. A – At. Mol. Opt. Phys. 89, 051602 (2014).
http://dx.doi.org/10.1103/PhysRevA.89.051602
13.
13. C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar, Proc. Natl. Acad. Sci. U. S. A. 106, 1313 (2009);
http://dx.doi.org/10.1073/pnas.0812068106
13. M. Poggio and C. L. Degen, Nanotechnology 21, 342001 (2010).
http://dx.doi.org/10.1088/0957-4484/21/34/342001
14.
14. B. Stipe, H. Mamin, T. Stowe, T. Kenny, and D. Rugar, Phys. Rev. Lett. 86, 2874 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2874
15.
15. N. Jenkins and L. DeFlores, J. Vac. Sci. Technol. B 22, 909 (2004);
http://dx.doi.org/10.1116/1.1695336
15. M. Poggio, C. L. Degen, C. T. Rettner, H. J. Mamin, and D. Rugar, Appl. Phys. Lett. 90, 263111 (2007).
http://dx.doi.org/10.1063/1.2752536
16.
16. S. Rubanov and P. R. Munroe, J. Microsc. 214, 213 (2004);
http://dx.doi.org/10.1111/j.0022-2720.2004.01327.x
16. L. Giannuzzi and F. Stevie, Micron 30, 197 (1999);
http://dx.doi.org/10.1016/S0968-4328(99)00005-0
16. C. Rossel, P. Bauer, D. Zech, J. Hofer, M. Willemin, and H. Keller, J. Appl. Phys. 79, 8166 (1996).
http://dx.doi.org/10.1063/1.362550
17.
17. W. K. Shen, J. H. Judy, and J.-P. Wang, J. Appl. Phys. 97, 10H301 (2005).
http://dx.doi.org/10.1063/1.1847312
18.
18. D. R. B. Chui, Y. Hishinuma, R. Budakian, H. Mamin, and T. Kenny, in Technical Digest 12th International Conference on Solid-State Sensors and Actuators (2003), pp. 11201123.
19.
19. E. C. Heeres, A. J. Katan, M. H. van Es, A. F. Beker, M. Hesselberth, D. J. van der Zalm, and T. H. Oosterkamp, Rev. Sci. Instrum. 81, 023704 (2010).
http://dx.doi.org/10.1063/1.3271033
20.
20. J. P. Attané, D. Ravelosona, A. Marty, V. D. Nguyen, and L. Vila, Phys. Rev. B – Condens. Matter Mater. Phys. 84, 144418 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.144418
21.
21. J. A. Marohn, R. Fainchtein, and D. D. Smith, Appl. Phys. Lett. 73, 3778 (1998).
http://dx.doi.org/10.1063/1.122892
22.
22. J. P. Cleveland, S. Manne, D. Bocek, and P. K. Hansma, Rev. Sci. Instrum. 64, 403 (1993).
http://dx.doi.org/10.1063/1.1144209
23.
23. T. N. Ng, N. Jenkins, and J. Marohn, IEEE Trans. Magn. 42, 378 (2006).
http://dx.doi.org/10.1109/TMAG.2006.870259
24.
24.See supplementary material at http://dx.doi.org/10.1063/1.4928929 for a description of the different orientations in which magnets can be attached to cantilevers.[Supplementary Material]
25.
25. A. Vinante, A. Kirste, A. den Haan, O. Usenko, G. Wijts, E. Jeffrey, P. Sonin, D. Bouwmeester, and T. H. Oosterkamp, Appl. Phys. Lett. 101, 123101 (2012).
http://dx.doi.org/10.1063/1.4752766
26.
26. P. C. Hammel, private communication (2009).
27.
27. A. Vinante, G. Wijts, and O. Usenko, Nat. Commun. 2, 572 (2011).
http://dx.doi.org/10.1038/ncomms1581
28.
28. R. Gerritsma, “ Permanent magnetic atom chips and Bose-Einstein condensation,” Ph.D. thesis, Universiteit van Amsterdam, 2007.
29.
29. V. Y. F. Leung, A. Tauschinsky, N. J. Druten, and R. J. C. Spreeuw, Quantum Inf. Process. 10, 955 (2011).
http://dx.doi.org/10.1007/s11128-011-0295-1
30.
30. I. Herrera, Y. Wang, P. Michaux, D. Nissen, P. Surendran, S. Juodkazis, S. Whitlock, R. McLean, A. Sidorov, M. Albrecht, and P. Hannaford, J. Phys. D: Appl. Phys. 48, 115002 (2015); e-print arXiv:1410.0528v2.
http://dx.doi.org/10.1088/0022-3727/48/11/115002
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/7/10.1063/1.4928929
Loading
/content/aip/journal/apl/107/7/10.1063/1.4928929
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/7/10.1063/1.4928929
2015-08-19
2016-12-10

Abstract

We investigate the degradation of the magnetic moment of a 300 nm thick FePt film induced by Focused Ion Beam (FIB) milling. A 1 m × 8 m rod is milled out of a film by a FIB process and is attached to a cantilever by electron beam induced deposition. Its magnetic moment is determined by frequency-shift cantilever magnetometry. We find that the magnetic moment of the rod is  = 1.1 ± 0.1 × 10−12 Am2, which implies that 70% of the magnetic moment is preserved during the FIB milling process. This result has important implications for atom trapping and magnetic resonance force microscopy, which are addressed in this paper.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/7/1.4928929.html;jsessionid=vNg_PWPyROSyWS6Y7JZl99ZP.x-aip-live-03?itemId=/content/aip/journal/apl/107/7/10.1063/1.4928929&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/7/10.1063/1.4928929&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/7/10.1063/1.4928929'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,