Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/7/10.1063/1.4929343
1.
1. H. Hoppe, J. Bachmann, B. Muhsin, K.-H. Drüe, I. Riedel, G. Gobsch, C. Buerhop-Lutz, C. Brabec, and V. Dyakonov, J. Appl. Phys. 107(1), 014505 (2010).
http://dx.doi.org/10.1063/1.3272709
2.
2. M. T. Lloyd, C. H. Peters, A. Garcia, I. V. Kauvar, J. J. Berry, M. O. Reese, M. D. McGehee, D. S. Ginley, and D. C. Olson, Sol. Energy Mater. Sol. Cells 95(5), 13821388 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.12.036
3.
3. M. Seeland, R. Rösch, and H. Hoppe, “ Imaging techniques for studying OPV stability and degradation,” in Stability and Degradation of Organic and Polymer Solar Cells, edited by F. C. Krebs ( John Wiley & Sons, 2012).
4.
4. M. Seeland, R. Roesch, and H. Hoppe, J. Appl. Phys. 109(6), 064513 (2011).
http://dx.doi.org/10.1063/1.3553864
5.
5. H. Klumbies, M. Karl, M. Hermenau, R. Rösch, M. Seeland, H. Hoppe, L. Müller-Meskamp, and K. Leo, Sol. Energy Mater. Sol. Cells 120, Part B(0), 685690 (2014).
http://dx.doi.org/10.1016/j.solmat.2013.10.023
6.
6. R. Rösch, D. M. Tanenbaum, M. Jorgensen, M. Seeland, M. Barenklau, M. Hermenau, E. Voroshazi, M. T. Lloyd, Y. Galagan, B. Zimmermann, U. Wurfel, M. Hosel, H. F. Dam, S. A. Gevorgyan, S. Kudret, W. Maes, L. Lutsen, D. Vanderzande, R. Andriessen, G. Teran-Escobar, M. Lira-Cantu, A. Rivaton, G. Y. Uzunoglu, D. Germack, B. Andreasen, M. V. Madsen, K. Norrman, H. Hoppe, and F. C. Krebs, Energy Environ. Sci. 5(4), 65216540 (2012).
http://dx.doi.org/10.1039/c2ee03508a
7.
7. U. Hoyer, M. Wagner, T. Swonke, J. Bachmann, R. Auer, A. Osvet, and C. J. Brabec, Appl. Phys. Lett. 97(23), 233303 (2010).
http://dx.doi.org/10.1063/1.3521259
8.
8. U. Hoyer, L. Pinna, T. Swonke, R. Auer, C. J. Brabec, T. Stubhan, and N. Li, Adv. Energy Mater. 1(6), 10971100 (2011).
http://dx.doi.org/10.1002/aenm.201100496
9.
9. M. Seeland, R. Rösch, and H. Hoppe, J. Appl. Phys. 111(2), 024505 (2012).
http://dx.doi.org/10.1063/1.3677981
10.
10. D. A. M. Egbe, S. Turk, S. Rathgeber, F. Kuhnlenz, R. Jadhav, A. Wild, E. Birckner, G. Adam, A. Pivrikas, V. Cimrova, G. Knor, N. S. Sariciftci, and H. Hoppe, Macromolecules 43(3), 12611269 (2010).
http://dx.doi.org/10.1021/ma902273s
11.
11. C. Kastner, S. Rathgeber, D. A. M. Egbe, and H. Hoppe, J. Mater. Chem. A 1(12), 39613969 (2013).
http://dx.doi.org/10.1039/c3ta01070h
12.
12. P. Würfel, J. Phys. C: Solid State Phys. 15(18), 39673985 (1982).
http://dx.doi.org/10.1088/0022-3719/15/18/012
13.
13. M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc. 131(26), 92819286 (2009).
http://dx.doi.org/10.1021/ja9007722
14.
14. C. Kästner, D. K. Susarova, R. Jadhav, C. Ulbricht, D. A. M. Egbe, S. Rathgeber, P. A. Troshin, and H. Hoppe, J. Mater. Chem. 22(31), 1598715997 (2012).
http://dx.doi.org/10.1039/c2jm32629a
15.
15. N. D. Treat, A. Varotto, C. J. Takacs, N. Batara, M. Al-Hashimi, M. J. Heeney, A. J. Heeger, F. Wudl, C. J. Hawker, and M. L. Chabinyc, J. Am. Chem. Soc. 134(38), 1586915879 (2012).
http://dx.doi.org/10.1021/ja305875u
16.
16. C. Kästner, X. Jiao, D. A. M. Egbe, H. Ade, and H. Hoppe, Proc. SPIE 9184, 91840Z (2014).
http://dx.doi.org/10.1117/12.2062089
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/7/10.1063/1.4929343
Loading
/content/aip/journal/apl/107/7/10.1063/1.4929343
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/7/10.1063/1.4929343
2015-08-20
2016-12-10

Abstract

We present a method for quantitative evaluation of electroluminescence images from thin film solar cells. The method called “quantitative electroluminescence imaging” (QuELI) is based on decoupling local equivalent circuit parameters and allows calculation of the local current-density as well as the local series resistance and saturation current-density. By application of this method to electroluminescence images obtained from polymer-fullerene based solar cells, we show that QuELI allows efficient separation between: (a) properties of the electrodes and their associated interfaces by the local series resistance and (b) properties of the active layer by the saturation current-density. We furthermore reveal large scale lateral phase separation via the strong variation in the saturation current-density, which delivers information on the energetic difference of thermal activation of charge carriers across the effective active band gap.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/7/1.4929343.html;jsessionid=3Bse-W8PCpdUIovRNqx4WdUy.x-aip-live-03?itemId=/content/aip/journal/apl/107/7/10.1063/1.4929343&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/7/10.1063/1.4929343&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/7/10.1063/1.4929343'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,