Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/8/10.1063/1.4928527
1.
1. A. Zakutayev, V. Stevanovic, and S. Lany, Appl. Phys. Lett. 106, 123903 (2015).
http://dx.doi.org/10.1063/1.4914974
2.
2. D. O. Scanlon and G. W. Watson, Phys. Rev. Lett. 106, 186403 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.186403
3.
3. Y. S. Lee, M. T. Winkler, S. C. Siah, R. Brandt, and T. Buonassisi, Appl. Phys. Lett. 98, 192115 (2011).
http://dx.doi.org/10.1063/1.3589810
4.
4. Z. Zang, A. Nakamura, and J. Temmyo, Opt. Express 21, 11448 (2013).
http://dx.doi.org/10.1364/OE.21.011448
5.
5. Z. Zang, A. Nakamura, and J. Temmyo, Mater. Lett. 92, 188 (2013).
http://dx.doi.org/10.1016/j.matlet.2012.10.083
6.
6. J. N. Nian, C. C. Tsai, P. C. Lin, and H. Teng, J. Electrochem. Soc. 156, H567 (2009).
http://dx.doi.org/10.1149/1.3125800
7.
7. D. O. Scanlon and G. W. Watson, J. Phys. Chem. Lett. 1, 2582 (2010).
http://dx.doi.org/10.1021/jz100962n
8.
8. B. Balamurugan, I. Aruna, B. R. Mehta, and S. M. Shivaprasad, Phys. Rev. B 69, 165419 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.165419
9.
9. Q. Bai, W. C. Wang, Q. M. Zhang, and M. Tao, J. Appl. Phys. 111, 023709 (2012).
http://dx.doi.org/10.1063/1.3677989
10.
10. S. X. Wu, Z. Y. Yin, Q. Y. He, G. Lu, X. Z. Zhou, and H. Zhang, J. Mater. Chem. 21, 3467 (2011).
http://dx.doi.org/10.1039/C0JM02267E
11.
11. A. O. Musa, T. Akomolafe, and M. J. Carter, Sol. Energy Mater. Sol. Cells 51, 305 (1998).
http://dx.doi.org/10.1016/S0927-0248(97)00233-X
12.
12. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
13.
13. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
14.
14. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
15.
15.Joint Committee on Powder Diffraction, Standards-International Center for Diffraction Data Card No. 78-2076.
16.
16. D. Q. Gao, Z. P. Zhang, Q. Xu, J. Zhang, Z. J. Yan, J. L. Yao, and D. S. Xue, Appl. Phys. Lett. 104, 022406 (2014).
http://dx.doi.org/10.1063/1.4861884
17.
17. C. Q. Zhu and M. J. Panzer, ACS Appl. Mater. Interfaces 7, 5624 (2015).
http://dx.doi.org/10.1021/acsami.5b00643
18.
18. R. D. Shannon, Acta Crystallogr., Sect. A: Found. Crystallogr. A32, 751 (1976).
http://dx.doi.org/10.1107/S0567739476001551
19.
19. S. Poulston, P. M. Parlett, P. Stone, and M. Bowker, Surf. Interface Anal. 24, 811 (1996).
http://dx.doi.org/10.1002/(SICI)1096-9918(199611)24:12<811::AID-SIA191>3.0.CO;2-Z
20.
20. A. W. C. Lin, N. R. Armstrong, and T. Kuwana, Anal. Chem. 49, 1228 (1977).
http://dx.doi.org/10.1021/ac50016a042
21.
21. C. Zhu, A. Osherov, and M. J. Panzer, Electrochim. Acta 111, 771 (2013).
http://dx.doi.org/10.1016/j.electacta.2013.08.038
22.
22. B. Millet, C. Fiaud, C. Hinnen, and E. M. M. Sutter, Corros. Sci. 37, 1903 (1995).
http://dx.doi.org/10.1016/0010-938X(95)00072-R
23.
23. W. L. Yu, Y. Z. Lin, X. W. Zhu, Z. G. Hu, M. J. Han, S. S. Cai, L. L. Chen, and H. H. Shao, J. Appl. Phys. 117, 045701 (2015).
http://dx.doi.org/10.1063/1.4906405
24.
24. Y. Nakano, S. Saeki, and T. Morikawa, Appl. Phys. Lett. 94, 022111 (2009).
http://dx.doi.org/10.1063/1.3072804
25.
25. V. Andrei, K. Bethke, and K. Rademann, Appl. Phys. Lett. 105, 233902 (2014).
http://dx.doi.org/10.1063/1.4903832
26.
26. V. Chang, H. Roias, and J. Jorge, Sens. Actuators, A 37–38, 375 (1993).
http://dx.doi.org/10.1016/0924-4247(93)80064-N
27.
27. N. N. Greenwood and D. R. J. S. Anderson, Nature 164, 346 (1949).
http://dx.doi.org/10.1038/164346a0
28.
28. J. S. Anderson and M. C. Morton, Trans. Faraday Soc. 43, 185 (1947).
http://dx.doi.org/10.1039/tf9474300185
29.
29. M. H. Zirin and D. Trivich, J. Chem. Phys. 39, 870 (1963).
http://dx.doi.org/10.1063/1.1734385
30.
30. Y. Tsur and I. Riess, Ionics 1, 488 (1995).
http://dx.doi.org/10.1007/BF02375295
31.
31. M. Z. Ansari and N. Khare, J. Appl. Phys. 117, 025706 (2015).
http://dx.doi.org/10.1063/1.4905673
32.
32. M. Tapiero, J. P. Zielinger, and C. Noguet, Phys. Status Solidi A 12, 517 (1972).
http://dx.doi.org/10.1002/pssa.2210120220
33.
33. E. Fortunato, V. Figueiredo, P. Barquinha, E. Elamurugu, R. Barros, G. Gonçalves, S. H. Ko Park, C. S. Hwang, and R. Martins, Appl. Phys. Lett. 96, 192102 (2010).
http://dx.doi.org/10.1063/1.3428434
34.
34. S. Ishizuka, S. Kato, T. Maruyama, and K. Akimoto, Jpn. J. Appl. Phys., Part 1 40, 2765 (2001).
http://dx.doi.org/10.1143/JJAP.40.2765
35.
35. G. M. Kavoulakis, Y.-C. Chang, and G. Baym, Phys. Rev. B 55, 7593 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.7593
36.
36. J. W. Hodby, T. E. Jenkins, C. Schwab, H. Tamura, and D. Trivich, J. Phys. C 9, 1429 (1976).
http://dx.doi.org/10.1088/0022-3719/9/8/014
37.
37. C.-S. Tan, S.-C. Hsu, W.-H. Ke, L.-J. Chen, and M. H. Huang, Nano Lett. 15, 2155 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b00150
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/8/10.1063/1.4928527
Loading
/content/aip/journal/apl/107/8/10.1063/1.4928527
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/8/10.1063/1.4928527
2015-08-26
2016-09-30

Abstract

Indium-doped Cu O thin films were fabricated on K9 glass substrates by direct current magnetron co-sputtering in an atmosphere of Ar and O. Metallic copper and indium disks were used as the targets. X-ray diffraction showed that the diffraction peaks could only be indexed to simple cubic Cu O, with no other phases detected. Indium atoms exist as In3+ in Cu O. Ultraviolet-visible spectroscopy showed that the transmittance of the samples was relatively high and that indium doping increased the optical band gaps. The Hall effect measurement showed that the samples were n-type semiconductors at room temperature. The Seebeck effect test showed that the films were n-type semiconductors near or over room temperature (<400 K), changing to p-type at relatively high temperatures. The conduction by the samples in the temperature range of the n-type was due to thermal band conduction and the donor energy level was estimated to be 620.2–713.8 meV below the conduction band. The theoretical calculation showed that indium doping can raise the Fermi energy level of Cu O and, therefore, lead to n-type conduction.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/8/1.4928527.html;jsessionid=ZEM42R0UwpGHjCy2tKlmONYA.x-aip-live-06?itemId=/content/aip/journal/apl/107/8/10.1063/1.4928527&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/8/10.1063/1.4928527&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/8/10.1063/1.4928527'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,