Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/8/10.1063/1.4929461
1.
1. S. Mandal, G. Dell'Erba, A. Luzio, S. G. Bucella, A. Perinot, A. Calloni, G. Berti, G. Bussetti, L. Duò, A. Facchetti, Y.-Y. Noh, and M. Caironi, Org. Electron. 20, 132 (2015).
http://dx.doi.org/10.1016/j.orgel.2015.02.006
2.
2. K.-J. Baeg, M. Caironi, and Y.-Y. Noh, Adv. Mater. (Weinheim) 25, 4210 (2013).
http://dx.doi.org/10.1002/adma.201205361
3.
3. J. Zaumseil, Semicond. Sci. Technol. 30, 74001 (2015).
http://dx.doi.org/10.1088/0268-1242/30/7/074001
4.
4. C. Yeom, K. Chen, D. Kiriya, Z. Yu, G. Cho, and A. Javey, Adv. Mater. 27, 1561 (2015).
http://dx.doi.org/10.1002/adma.201404850
5.
5. P. H. Lau, K. Takei, C. Wang, Y. Ju, J. Kim, Z. Yu, T. Takahashi, G. Cho, and A. Javey, Nano Lett. 13, 3864 (2013).
http://dx.doi.org/10.1021/nl401934a
6.
6. G. Gelinck, P. Heremans, K. Nomoto, and T. D. Anthopoulos, Adv. Mater. 22, 3778 (2010).
http://dx.doi.org/10.1002/adma.200903559
7.
7. H. Sirringhaus, Adv. Mater. 26, 1319 (2014).
http://dx.doi.org/10.1002/adma.201304346
8.
8. J. Zhang, Y. Fu, C. Wang, P.-C. Chen, Z. Liu, W. Wei, C. Wu, M. E. Thompson, and C. Zhou, Nano Lett. 11, 4852 (2011).
http://dx.doi.org/10.1021/nl202695v
9.
9. M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schütz, S. Maisch, F. Effenberger, M. Brunnbauer, and F. Stellacci, Nature 431, 963 (2004).
http://dx.doi.org/10.1038/nature02987
10.
10. A. Facchetti, M.-H. Yoon, and T. J. Marks, Adv. Mater. 17, 1705 (2005).
http://dx.doi.org/10.1002/adma.200500517
11.
11. X.-H. Zhang, B. Domercq, X. Wang, S. Yoo, T. Kondo, Z. L. Wang, and B. Kippelen, Org. Electron. 8, 718 (2007).
http://dx.doi.org/10.1016/j.orgel.2007.06.009
12.
12. A. Luzio, F. G. Ferré, F. Di Fonzo, and M. Caironi, Adv. Funct. Mater. 24, 1790 (2014).
http://dx.doi.org/10.1002/adfm.201302428
13.
13. J. Veres, S. Ogier, G. Lloyd, and D. de Leeuw, Chem. Mater. 16, 4543 (2004).
http://dx.doi.org/10.1021/cm049598q
14.
14. F. Bottacchi, L. Petti, F. Späth, I. Namal, G. Tröster, T. Hertel, and T. D. Anthopoulos, Appl. Phys. Lett. 106, 193302 (2015).
http://dx.doi.org/10.1063/1.4921078
15.
15. F. S. Kim, D.-K. Hwang, B. Kippelen, and S. A. Jenekhe, Appl. Phys. Lett. 99, 173303 (2011).
http://dx.doi.org/10.1063/1.3655680
16.
16. S. P. Tiwari, X.-H. Zhang, W. J. Potscavage, and B. Kippelen, Appl. Phys. Lett. 95, 223303 (2009).
http://dx.doi.org/10.1063/1.3269579
17.
17. Y. Zhou, S.-T. Han, Z.-X. Xu, and V. A. L. Roy, J. Mater. Chem. 22, 4060 (2012).
http://dx.doi.org/10.1039/c2jm15256h
18.
18. D. K. Hwang, C. Fuentes-Hernandez, J. B. Kim, W. J. Potscavage, Jr., and B. Kippelen, Org. Electron. 12, 1108 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.04.002
19.
19. Q. Cao, M.-G. Xia, M. Shim, and J. A. Rogers, Adv. Funct. Mater. 16, 2355 (2006).
http://dx.doi.org/10.1002/adfm.200600539
20.
20. B. Kim, J. Park, M. L. Geier, M. C. Hersam, and A. Dodabalapur, ACS Appl. Mater. Interfaces 7, 12009 (2015).
http://dx.doi.org/10.1021/acsami.5b02093
21.
21. S. Holliday, J. E. Donaghey, and I. McCulloch, Chem. Mater. 26, 647 (2014).
http://dx.doi.org/10.1021/cm402421p
22.
22. S. P. Schiessl, N. Fröhlich, M. Held, F. Gannott, M. Schweiger, M. Forster, U. Scherf, and J. Zaumseil, ACS Appl. Mater. Interfaces 7, 682 (2015).
http://dx.doi.org/10.1021/am506971b
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4929461 for a detailed description of the dielectric layers and transistors.[Supplementary Material]
24.
24. W. Xu, Z. Liu, J. Zhao, W. Xu, W. Gu, X. Zhang, L. Qian, and Z. Cui, Nanoscale 6, 14891 (2014).
http://dx.doi.org/10.1039/C4NR05471G
25.
25. J. Zhang, C. Wang, Y. Fu, Y. Che, and C. Zhou, ACS Nano 5, 3284 (2011).
http://dx.doi.org/10.1021/nn2004298
26.
26. D. B. Farmer and R. G. Gordon, Nano Lett. 6, 699 (2006).
http://dx.doi.org/10.1021/nl052453d
27.
27. L. S. Liyanage, D. J. Cott, A. Delabie, S. van Elshocht, Z. Bao, and H.-S. P. Wong, Nanotechnology 24, 245703 (2013).
http://dx.doi.org/10.1088/0957-4484/24/24/245703
28.
28. V. Perebeinos, S. V. Rotkin, A. G. Petrov, and P. Avouris, Nano Lett. 9, 312 (2009).
http://dx.doi.org/10.1021/nl8030086
29.
29. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices ( Wiley-Interscience, Hoboken, NJ, 2007).
30.
30. R. Di Pietro, D. Fazzi, T. B. Kehoe, and H. Sirringhaus, J. Am. Chem. Soc. 134, 14877 (2012).
http://dx.doi.org/10.1021/ja304198e
31.
31. S. W. Lee, S. Y. Lee, S. C. Lim, Y.-d. Kwon, J.-S. Yoon, K. Uh, and Y. H. Lee, Appl. Phys. Lett. 101, 53504 (2012).
http://dx.doi.org/10.1063/1.4740084
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/8/10.1063/1.4929461
Loading
/content/aip/journal/apl/107/8/10.1063/1.4929461
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/8/10.1063/1.4929461
2015-08-25
2016-09-27

Abstract

Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfO) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states at the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100–300 nF/cm2) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfO dielectrics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/8/1.4929461.html;jsessionid=l0nqKnuCjAQFRqgsfzkT--o2.x-aip-live-02?itemId=/content/aip/journal/apl/107/8/10.1063/1.4929461&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/8/10.1063/1.4929461&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/8/10.1063/1.4929461'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,