Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/8/10.1063/1.4929501
1.
1. H. Schneider, C. Schönbein, G. Bihlmann, P. Van Son, and H. Sigg, Appl. Phys. Lett. 70, 1602 (1997).
http://dx.doi.org/10.1063/1.118628
2.
2. H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors ( Springer, Berlin, 2006).
3.
3. M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, Appl. Phys. Lett. 84, 475 (2004).
http://dx.doi.org/10.1063/1.1641165
4.
4. M. Graf, N. Hoyler, M. Giovannini, J. Faist, and D. Hofstetter, Appl. Phys. Lett. 88, 241118 (2006).
http://dx.doi.org/10.1063/1.2210088
5.
5. D. Hofstetter, M. Beck, and J. Faist, Appl. Phys. Lett. 81, 2683 (2002).
http://dx.doi.org/10.1063/1.1512954
6.
6. L. Gendron, M. Carras, A. Huynh, V. Ortiz, C. Koeniguer, and V. Berger, Appl. Phys. Lett. 85, 2824 (2004).
http://dx.doi.org/10.1063/1.1781731
7.
7. L. Gendron, C. Koeniguer, V. Berger, and X. Marcadet, Appl. Phys. Lett. 86, 121116 (2005).
http://dx.doi.org/10.1063/1.1884257
8.
8. F. R. Giorgetta, E. Baumann, M. Graf, Q. Yangi, C. Manz, K. Köhler, H. E. Beere, D. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jäckel, M. Fischer, J. Faist, and D. Hofstetter, IEEE J. Quantum Electron. 45, 1039 (2009).
http://dx.doi.org/10.1109/JQE.2009.2017929
9.
9. H. Liu, C. Song, A. SpringThorpe, and J. Cao, Appl. Phys. Lett. 84, 4068 (2004).
http://dx.doi.org/10.1063/1.1751620
10.
10. S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva, N. Grandjean, and F. H. Julien, Appl. Phys. Lett. 100, 181103 (2012).
http://dx.doi.org/10.1063/1.4707904
11.
11. A. P. Ravikumar, T. A. Garcia, J. De Jesus, M. C. Tamargo, and C. F. Gmachl, Appl. Phys. Lett. 105, 061113 (2014).
http://dx.doi.org/10.1063/1.4893359
12.
12. P. Reininger, B. Schwarz, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, Appl. Phys. Lett. 105, 091108 (2014).
http://dx.doi.org/10.1063/1.4894767
13.
13. I. Vurgaftman, J. Meyer, and L. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).
http://dx.doi.org/10.1063/1.1368156
14.
14. P. Reininger, B. Schwarz, A. Harrer, T. Zederbauer, H. Detz, A. M. Andrews, R. Gansch, W. Schrenk, and G. Strasser, Appl. Phys. Lett. 103, 241103 (2013).
http://dx.doi.org/10.1063/1.4846035
15.
15. O. Baumgartner, Z. Stanojevic, and H. Kosina, in SISPAD (2011), p. 91.
16.
16. H. Ye, L. Li, R. Hinkey, R. Yang, T. Mishima, J. Keay, M. Santos, and M. Johnson, J. Vac. Sci. Technol., B 31, 03C135 (2013).
http://dx.doi.org/10.1116/1.4804397
17.
17. K. Ohtani and H. Ohno, Appl. Phys. Lett. 82, 1003 (2003).
http://dx.doi.org/10.1063/1.1545151
18.
18. R. Teissier, D. Barate, A. Vicet, C. Alibert, A. Baranov, X. Marcadet, C. Renard, M. Garcia, C. Sirtori, D. Revin, and J. Cockburn, Appl. Phys. Lett. 85, 167 (2004).
http://dx.doi.org/10.1063/1.1768306
19.
19. X. Marcadet, C. Renard, M. Carras, M. Garcia, and J. Massies, Appl. Phys. Lett. 91, 161104 (2007).
http://dx.doi.org/10.1063/1.2790824
20.
20. X. Marcadet, C. Becker, M. Garcia, I. Prévot, C. Renard, and C. Sirtori, J. Cryst. Growth 251, 723 (2003).
http://dx.doi.org/10.1016/S0022-0248(02)02319-9
21.
21. R. Ferreira and G. Bastard, Phys. Rev. B 40, 1074 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.1074
22.
22. A. Delga, L. Doyennette, M. Carras, V. Trinité, and P. Bois, Appl. Phys. Lett. 102, 163507 (2013).
http://dx.doi.org/10.1063/1.4803447
23.
23. A. Delga, M. Carras, L. Doyennette, V. Trinité, A. Nedelcu, and V. Berger, Appl. Phys. Lett. 99, 252106 (2011).
http://dx.doi.org/10.1063/1.3671328
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/8/10.1063/1.4929501
Loading
/content/aip/journal/apl/107/8/10.1063/1.4929501
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/8/10.1063/1.4929501
2015-08-24
2016-12-10

Abstract

In this letter, we introduce the InAs/AlAsSb material system for quantum cascade detectors (QCDs). InAs/AlAsSb can be grown lattice matched to InAs and exhibits a conduction band offset of approximately 2.1 eV, enabling the design of very short wavelength quantum cascade detectors. Another benefit using this material system is the low effective mass of the well material that improves the total absorption of the detector and decreases the intersubband scattering rates, which increases the device resistance and thus enhances the noise behavior. We have designed, grown, and measured a QCD that detects at a wavelength of  = 4.84 m and shows a peak specific detectivity of approximately 2.7 × 107 Jones at  = 300 K.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/8/1.4929501.html;jsessionid=ybjQg0xcz1CaGUVlUh7UoInZ.x-aip-live-03?itemId=/content/aip/journal/apl/107/8/10.1063/1.4929501&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/8/10.1063/1.4929501&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/8/10.1063/1.4929501'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,