Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/8/10.1063/1.4929605
1.
1. Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, and M. McCreary, Nature 423(6936), 136 (2003).
http://dx.doi.org/10.1038/423136a
2.
2. G. H. Gelinck, H. E. A. Huitema, E. Van Veenendaal, E. Cantatore, L. Schrijnemakers, J. Van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. Van Rens, and D. M. De Leeuw, Nat. Mater. 3(2), 106110 (2004).
http://dx.doi.org/10.1038/nmat1061
3.
3. S. Kim, H. J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, Adv. Mater. 23(31), 3511 (2011).
http://dx.doi.org/10.1002/adma.201101066
4.
4. B. Yoon, D. Y. Ham, O. Yarimaga, H. An, C. W. Lee, and J. M. Kim, Adv. Mater. 23(46), 5492 (2011).
http://dx.doi.org/10.1002/adma.201103471
5.
5. R. D. Ponce Wong, J. D. Posner, and V. J. Santos, Sens. Actuators A: Phys. 179(0), 6269 (2012).
http://dx.doi.org/10.1016/j.sna.2012.03.023
6.
6. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. G. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, Science 320(5875), 507511 (2008).
http://dx.doi.org/10.1126/science.1154367
7.
7. H. C. Ko, M. P. Stoykovich, J. Z. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. L. Xiao, S. D. Wang, Y. G. Huang, and J. A. Rogers, Nature 454(7205), 748753 (2008).
http://dx.doi.org/10.1038/nature07113
8.
8. D. H. Kim, N. S. Lu, R. Ma, Y. S. Kim, R. H. Kim, S. D. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T. I. Kim, R. Chowdhury, M. Ying, L. Z. Xu, M. Li, H. J. Chung, H. Keum, M. McCormick, P. Liu, Y. W. Zhang, F. G. Omenetto, Y. G. Huang, T. Coleman, and J. A. Rogers, Science 333(6044), 838843 (2011).
http://dx.doi.org/10.1126/science.1206157
9.
9. N. M. Farandos, A. K. Yetisen, M. J. Monteiro, C. R. Lowe, and S. H. Yun, Adv. Healthcare Mater. 4(6), 792810 (2015).
http://dx.doi.org/10.1002/adhm.201400504
10.
10. T. Someya, Stretchable Electronics ( Wiley-VCH, Weinheim, 2013), p. 1 online resource (xxi, 462 pages).
11.
11. R. Mahajan, P. Brofman, R. Alapati, C. Hilbert, L. Nguyen, K. Maekawa, M. Varughese, D. O'Connor, S. Ramaswami, and J. Candelaria, Packaging Needs Document ( Semiconductor Research Corporation, 2015), pp 19.
12.
12. H. Yung-Yu, K. Lucas, D. Davis, B. Elolampi, R. Ghaffari, C. Rafferty, and K. Dowling, IEEE Trans. Electron Devices 60(7), 23382345 (2013).
http://dx.doi.org/10.1109/TED.2013.2264217
13.
13. Y.-Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren, and I. De Wolf, J. Micromech. Microeng. 20(7), 075036 (2010).
http://dx.doi.org/10.1088/0960-1317/20/7/075036
14.
14. R. Taylor, C. Boyce, M. Boyce, and B. Pruitt, J. Micromech. Microeng. 23(10), 105004 (2013).
http://dx.doi.org/10.1088/0960-1317/23/10/105004
15.
15. Y. Zhang, H. Fu, Y. Su, S. Xu, H. Cheng, J. A. Fan, K.-C. Hwang, J. A. Rogers, and Y. Huang, Acta Mater. 61(20), 78167827 (2013).
http://dx.doi.org/10.1016/j.actamat.2013.09.020
16.
16. Y. Zhang, S. Wang, X. Li, J. A. Fan, S. Xu, Y. M. Song, K. J. Choi, W. H. Yeo, W. Lee, and S. N. Nazaar, Adv. Funct. Mater. 24(14), 20282037 (2014).
http://dx.doi.org/10.1002/adfm.201302957
17.
17. Y.-Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren, and I. De Wolf, Thin Solid Films 519(7), 22252234 (2011).
http://dx.doi.org/10.1016/j.tsf.2010.10.069
18.
18. M. Jablonski, F. Bossuyt, J. Vanfleteren, T. Vervust, and H. de Vries, Microelectron. Reliab. 53(7), 956963 (2013).
http://dx.doi.org/10.1016/j.microrel.2013.04.002
19.
19. M. Gonzalez, B. Vandevelde, W. Christiaens, Y.-Y. Hsu, F. Iker, F. Bossuyt, J. Vanfleteren, O. Van der Sluis, and P. Timmermans, Microelectron. Reliab. 51(6), 10691076 (2011).
http://dx.doi.org/10.1016/j.microrel.2011.03.012
20.
20. C. Lv, H. Yu, and H. Jiang, Extreme Mech. Lett. 1, 2934 (2014).
http://dx.doi.org/10.1016/j.eml.2014.12.008
21.
21. S. Béfahy, S. Yunus, T. Pardoen, P. Bertrand, and M. Troosters, Appl. Phys. Lett. 91(14), 141911 (2007).
http://dx.doi.org/10.1063/1.2793185
22.
22. J. A. Rogers, T. Someya, and Y. Huang, Science 327(5973), 16031607 (2010).
http://dx.doi.org/10.1126/science.1182383
23.
23. E. Kim, H. Tu, C. Lv, H. Jiang, H. Yu, and Y. Xu, Appl. Phys. Lett. 102(3), 033506 (2013).
http://dx.doi.org/10.1063/1.4788917
24.
24. D.-Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, Science 311(5758), 208212 (2006).
http://dx.doi.org/10.1126/science.1121401
25.
25. H. Yung-Yu, P. Cole, L. Daniel, W. Xianyan, R. Milan, Z. Baosheng, and G. Roozbeh, J. Micromech. Microeng. 24(9), 095014 (2014).
http://dx.doi.org/10.1088/0960-1317/24/9/095014
26.
26. S. Wagner and S. Bauer, MRS Bull. 37(03), 207213 (2012).
http://dx.doi.org/10.1557/mrs.2012.37
27.
27. N. Lu, X. Wang, Z. Suo, and J. Vlassak, J. Appl. Phys. Lett. 91(22), 221909 (2007).
http://dx.doi.org/10.1063/1.2817234
28.
28. Y. Xiang, T. Li, Z. Suo, and J. Vlassak, J. Appl. Phys. Lett. 87(16), 161910 (2005).
http://dx.doi.org/10.1063/1.2108110
29.
29. S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, Proc. IEEE 93(8), 14591467 (2005).
http://dx.doi.org/10.1109/JPROC.2005.851502
30.
30. J. Jones, S. P. Lacour, S. Wagner, and Z. Suo, J. Vacuum Sci. Technol. A 22(4), 17231725 (2004).
http://dx.doi.org/10.1116/1.1756879
31.
31. O. Akogwu, D. Kwabi, S. Midturi, M. Eleruja, B. Babatope, and W. O. Soboyejo, Mater. Sci. Eng.: B 170(1), 3240 (2010).
http://dx.doi.org/10.1016/j.mseb.2010.02.023
32.
32. T. Li and Z. Suo, Int. J. Solids Struct. 43(7), 23512363 (2006).
http://dx.doi.org/10.1016/j.ijsolstr.2005.04.034
33.
33. T. Li, Z. Huang, Z. Xi, S. P. Lacour, S. Wagner, and Z. Suo, Mech. Mater. 37(2), 261273 (2005).
http://dx.doi.org/10.1016/j.mechmat.2004.02.002
34.
34. C. Tsay, S. P. Lacour, S. Wagner, T. Li, and Z. Suo, “ How stretchable can we make thin metal films?,” in MRS Proceedings ( Cambridge Univ Press, 2005), p O5. 5.
35.
35. H. Vandeparre, Q. Liu, I. R. Minev, Z. Suo, and S. P. Lacour, Adv. Mater. 25(22), 31173121 (2013).
http://dx.doi.org/10.1002/adma.201300587
36.
36. R. Reed, C. McCowan, R. Walsh, L. Delgado, and J. McColskey, Mater. Sci. Eng.: A 102(2), 227236 (1988).
http://dx.doi.org/10.1016/0025-5416(88)90578-2
37.
37.See supplementary material at http://dx.doi.org/10.1063/1.4929605 for sample image after failure, a histogram of strain-to-failure data, and a video of the stretching of one of the samples.[Supplementary Material]
38.
38. R. Hill, The Mathematical Theory of Plasticity, Oxford Classic Texts in the Physical Sciences ( Oxford University Press, 1998).
39.
39. N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, Nature 393(6681), 146149 (1998).
http://dx.doi.org/10.1038/30193
40.
40. I. Johnston, D. McCluskey, C. Tan, and M. Tracey, J. Micromech. Microeng. 24(3), 035017 (2014).
http://dx.doi.org/10.1088/0960-1317/24/3/035017
41.
41.See http://www.indium.com/metals/indium/physical-constants, for “physical constants of pure indium by indium corporation,” (accessed 4 August).
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/8/10.1063/1.4929605
Loading
/content/aip/journal/apl/107/8/10.1063/1.4929605
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/8/10.1063/1.4929605
2015-08-28
2016-09-28

Abstract

Metal interconnects in flexible and wearable devices are heterogeneous metal-polymer systems that are expected to sustain large deformation without failure. The principal strategy to make strain tolerant interconnect lines on flexible substrates has comprised of creating serpentine structures of metal films with either in-plane or out-of-plane waves, using porous substrates, or using highly ductile materials such as gold. The wavy and helical serpentine patterns preclude high-density packing of interconnect lines on devices, while ductile materials such as Au are cost prohibitive for real world applications. Ductile copper films can be stretched if bonded to the substrate, but show high level of cracking beyond few tens of % strain. In this paper, we demonstrate a material system consisting of Indium metal film over an elastomer (PDMS) with a discontinuous Cr layer such that the metal interconnect can be stretched to extremely high linear strain (up to 100%) without any visible cracks. Such linear strain in metal interconnects exceeds that reported in literature and is obtained without the use of any geometrical manipulations or porous substrates. Systematic experimentation is carried out to explain the mechanisms that allow the Indium film to sustain the high strain level without failure. The islands forming the discontinuous Cr layer are shown to move apart from each other during stretching without delamination, providing strong adhesion to the Indium film while accommodating the large strain in the system. The Indium film is shown to form surface wrinkles upon release from the large strain, confirming its strong adhesion to PDMS. A model is proposed based upon the observations that can explain the high level of stretch-ability of the Indium metal film over the PDMS substrate.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/8/1.4929605.html;jsessionid=jMWX816Hp0tXoRECRF8Mt0Z2.x-aip-live-02?itemId=/content/aip/journal/apl/107/8/10.1063/1.4929605&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/8/10.1063/1.4929605&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/8/10.1063/1.4929605'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,