Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/1/10.1063/1.4939682
1.
1. E. Linn, R. Rosezin, C. Kugeler, and R. Waser, Nat. Mater. 9, 403406 (2010).
http://dx.doi.org/10.1038/nmat2748
2.
2. Y. Yang, P. Sheridan, and W. Lu, Appl. Phys. Lett. 100, 203112 (2012).
http://dx.doi.org/10.1063/1.4719198
3.
3. S. Gao, F. Zeng, M. Wang, G. Wang, C. Song, and F. Pan, Phys. Chem. Chem. Phys. 17, 1284912856 (2015).
http://dx.doi.org/10.1039/C5CP01235J
4.
4. S. Ambrogio, S. Balatti, D. C. Gilmer, and D. Ielmini, IEEE Trans. Electron Devices 61(7), 23782386 (2014).
http://dx.doi.org/10.1109/TED.2014.2325531
5.
5. Y. W. Dai, L. Chen, W. Yang, Q. Q. Sun, P. Zhou, P. F. Wang, S. J. Ding, D. W. Zhang, and F. Xiao, IEEE Electron Device Lett. 35(9), 915917 (2014).
http://dx.doi.org/10.1109/LED.2014.2334609
6.
6. A. Prakash, S. Maikap, S. Z. Rahaman, S. Majumdar, S. Manna, and S. K. Ray, Nanoscale Res. Lett. 8, 220 (2013).
http://dx.doi.org/10.1186/1556-276X-8-220
7.
7. D. Jana, M. Dutta, S. Samanta, and S. Maikap, Nanoscale Res. Lett. 9, 680 (2014).
http://dx.doi.org/10.1186/1556-276X-9-680
8.
8. W. Banerjee, S. Maikap, C. S. Lai, Y. Y. Chen, T. C. Tien, H. Y. Lee, W. S. Chen, F. T. Chen, M. J. Kao, M. J. Tsai, and J. R. Yang, Nanoscale Res. Lett. 7, 194 (2012).
http://dx.doi.org/10.1186/1556-276X-7-194
9.
9. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials ( Oxford University Press, 1979).
10.
10. K. V. Egorov, R. V. Kirtaev, Y. Y. Lebedinskii, A. M. Markeev, Y. A. Matveyev, O. M. Orlov, A. V. Zablotskiy, and A. V. Zenkevich, Phys. Status Solidi A 212, 809816 (2015).
http://dx.doi.org/10.1002/pssa.201431674
11.
11. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. ( Wiley publication, New York, 1981).
12.
12. S. C. Chen, T. C. Chang, S. Y. Chen, H. W. Li, Y. T. Tsai, S. M. Sze, F. S. Yeh (Huang), and Y. H. Tai, Electrochem. Solid-State Lett. 14(2), H103H106 (2011).
http://dx.doi.org/10.1149/1.3518710
13.
13. J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, J. Electrochem. Soc. 155(11), H873H877 (2008).
http://dx.doi.org/10.1149/1.2972031
14.
14. J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M Rosamilia, Appl. Phys. Lett. 77, 130 (2000).
http://dx.doi.org/10.1063/1.126899
15.
15. C. M. Tanner, Y. C. Perng, C. Frewin, S. E. Saddow, and J. P. Chang, Appl. Phys. Lett. 91, 203510 (2007).
http://dx.doi.org/10.1063/1.2805742
16.
16. S. Maikap, T. Y. Wang, H. Y. Lee, P. J. Tzeng, C. C. Wang, L. S. Lee, K. C. Liu, J. R. Yang, and M. J. Tsai, Semicond. Sci. Technol. 22, 884889 (2007).
http://dx.doi.org/10.1088/0268-1242/22/8/010
17.
17. J. J. Yang, M. X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. M. Ribeiro, and R. S. Williams, Appl. Phys. Lett. 97, 232102 (2010).
http://dx.doi.org/10.1063/1.3524521
18.
18. K. H. Chen, R. Zhang, T. C. Chang, T. M. Tsai, K. C. Chang, J. C. Lou, T. F. Young, J. H. Chen, C. C. Shih, C. W. Tung, Y. E. Syu, and S. M. Sze, Appl. Phys. Lett. 102, 133503 (2013).
http://dx.doi.org/10.1063/1.4799655
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/1/10.1063/1.4939682
Loading
/content/aip/journal/apl/108/1/10.1063/1.4939682
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/1/10.1063/1.4939682
2016-01-07
2016-12-05

Abstract

The complementary resistive switching (CRS) characteristics using an IrO/GdO/AlO/TiN single cell are observed whereas the bipolar resistive switching (BRS) characteristics are observed for the IrO/GdO/TiN structure. Transmission electron microscope and energy dispersive X-ray spectroscopy depth profile show crystalline GdO film and the presence of higher amount of oxygen at both IrO/GdO interface and AlO layer. Inserting thin AlO layer, the BRS is changed to CRS. This CRS has hopping distance of 0.58 nm and Poole-Frenkel current conductions for the “0” and “1” states, respectively. A schematic model using oxygen vacancy filament formation/rupture at the TE/GdO interface and AlO layer has been illustrated. This CRS device has good endurance of 1000 cycles with a pulse width of 1 s, which is very useful for future crossbar architecture.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/1/1.4939682.html;jsessionid=sBsMYLWIT9_ML5PYN8vqG1kr.x-aip-live-02?itemId=/content/aip/journal/apl/108/1/10.1063/1.4939682&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/1/10.1063/1.4939682&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/1/10.1063/1.4939682'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,