Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. E. Linn, R. Rosezin, C. Kugeler, and R. Waser, Nat. Mater. 9, 403406 (2010).
2. Y. Yang, P. Sheridan, and W. Lu, Appl. Phys. Lett. 100, 203112 (2012).
3. S. Gao, F. Zeng, M. Wang, G. Wang, C. Song, and F. Pan, Phys. Chem. Chem. Phys. 17, 1284912856 (2015).
4. S. Ambrogio, S. Balatti, D. C. Gilmer, and D. Ielmini, IEEE Trans. Electron Devices 61(7), 23782386 (2014).
5. Y. W. Dai, L. Chen, W. Yang, Q. Q. Sun, P. Zhou, P. F. Wang, S. J. Ding, D. W. Zhang, and F. Xiao, IEEE Electron Device Lett. 35(9), 915917 (2014).
6. A. Prakash, S. Maikap, S. Z. Rahaman, S. Majumdar, S. Manna, and S. K. Ray, Nanoscale Res. Lett. 8, 220 (2013).
7. D. Jana, M. Dutta, S. Samanta, and S. Maikap, Nanoscale Res. Lett. 9, 680 (2014).
8. W. Banerjee, S. Maikap, C. S. Lai, Y. Y. Chen, T. C. Tien, H. Y. Lee, W. S. Chen, F. T. Chen, M. J. Kao, M. J. Tsai, and J. R. Yang, Nanoscale Res. Lett. 7, 194 (2012).
9. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials ( Oxford University Press, 1979).
10. K. V. Egorov, R. V. Kirtaev, Y. Y. Lebedinskii, A. M. Markeev, Y. A. Matveyev, O. M. Orlov, A. V. Zablotskiy, and A. V. Zenkevich, Phys. Status Solidi A 212, 809816 (2015).
11. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. ( Wiley publication, New York, 1981).
12. S. C. Chen, T. C. Chang, S. Y. Chen, H. W. Li, Y. T. Tsai, S. M. Sze, F. S. Yeh (Huang), and Y. H. Tai, Electrochem. Solid-State Lett. 14(2), H103H106 (2011).
13. J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, J. Electrochem. Soc. 155(11), H873H877 (2008).
14. J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M Rosamilia, Appl. Phys. Lett. 77, 130 (2000).
15. C. M. Tanner, Y. C. Perng, C. Frewin, S. E. Saddow, and J. P. Chang, Appl. Phys. Lett. 91, 203510 (2007).
16. S. Maikap, T. Y. Wang, H. Y. Lee, P. J. Tzeng, C. C. Wang, L. S. Lee, K. C. Liu, J. R. Yang, and M. J. Tsai, Semicond. Sci. Technol. 22, 884889 (2007).
17. J. J. Yang, M. X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. M. Ribeiro, and R. S. Williams, Appl. Phys. Lett. 97, 232102 (2010).
18. K. H. Chen, R. Zhang, T. C. Chang, T. M. Tsai, K. C. Chang, J. C. Lou, T. F. Young, J. H. Chen, C. C. Shih, C. W. Tung, Y. E. Syu, and S. M. Sze, Appl. Phys. Lett. 102, 133503 (2013).

Data & Media loading...


Article metrics loading...



The complementary resistive switching (CRS) characteristics using an IrO/GdO/AlO/TiN single cell are observed whereas the bipolar resistive switching (BRS) characteristics are observed for the IrO/GdO/TiN structure. Transmission electron microscope and energy dispersive X-ray spectroscopy depth profile show crystalline GdO film and the presence of higher amount of oxygen at both IrO/GdO interface and AlO layer. Inserting thin AlO layer, the BRS is changed to CRS. This CRS has hopping distance of 0.58 nm and Poole-Frenkel current conductions for the “0” and “1” states, respectively. A schematic model using oxygen vacancy filament formation/rupture at the TE/GdO interface and AlO layer has been illustrated. This CRS device has good endurance of 1000 cycles with a pulse width of 1 s, which is very useful for future crossbar architecture.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd