Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/11/10.1063/1.4944419
1.
1. M. Gajek, J. J. Nowak, J. Z. Sun, P. L. Trouilloud, E. J. O'Sullivan, D. W. Abraham, M. C. Gaidis, G. Hu, S. Brown, Y. Zhu, R. P. Robertazzi, W. J. Gallagher, and D. C. Worledge, Appl. Phys. Lett. 100, 132408 (2012).
http://dx.doi.org/10.1063/1.3694270
2.
2. A. V. Khvalkovskiy, D. Apalkov, S. Watts, R. Chepulskii, R. S. Beach, A. Ong, X. Tang, W. H. Butler, P. B. Visscher, D. Lottis, E. Chen, V. Nikitin, and M. Krounbi, J. Phys. D: Appl. Phys. 46, 074001 (2013).
http://dx.doi.org/10.1088/0022-3727/46/7/074001
3.
3. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nat. Mater. 9, 721 (2010).
http://dx.doi.org/10.1038/nmat2804
4.
4. K. Yakushiji, T. Saruya, H. Kubota, A. Fukushima, T. Nagahama, S. Yuasa, and K. Ando, Appl. Phys. Lett. 97, 232508 (2010).
http://dx.doi.org/10.1063/1.3524230
5.
5. H. Sato, M. Yamanouchi, S. Ikeda, S. Fukami, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 101, 022414 (2012).
http://dx.doi.org/10.1063/1.4736727
6.
6. M. Yamanouchi, L. Chen, J. Kim, M. Hayashi, H. Sato, S. Fukami, S. Ikeda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 102, 212408 (2013).
http://dx.doi.org/10.1063/1.4808033
7.
7. S. Ishikawa, H. Sato, M. Yamanouchi, S. Ikeda, S. Fukami, F. Matsukura, and H. Ohno, J. Appl. Phys. 115, 17C719 (2014).
http://dx.doi.org/10.1063/1.4862724
8.
8. S. Heinze, K. Von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel, Nat. Phys. 7, 713 (2011).
http://dx.doi.org/10.1038/nphys2045
9.
9. C. Moreau-Luchaire, C. Moutafis, N. Reyren, J. Sampaio, C. A. F. Vaz, N. Van Horne, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P. Wohlhüter, J.-M. George, M. Weigand, J. Raabe, V. Cros, and A. Fert, “Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature,” Nat. Nanotechnol. (published online).
http://dx.doi.org/10.1038/nnano.2015.313
10.
10. J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nat. Nanotechnol. 8, 839 (2013).
http://dx.doi.org/10.1038/nnano.2013.210
11.
11. S. Rohart and A. Thiaville, Phys. Rev. B 88, 184422 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.184422
12.
12. N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013).
http://dx.doi.org/10.1038/nnano.2013.243
13.
13. S. Pizzini, J. Vogel, S. Rohart, E. Jué, O. Boulle, I. M. Miron, C. K. Safeer, S. Auffret, G. Gaudin, and A. Thiaville, Phys. Rev. Lett. 113, 047203 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.047203
14.
14. I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
http://dx.doi.org/10.1016/0022-3697(58)90076-3
15.
15. T. Moriya, Phys. Rev. 120, 91 (1956).
http://dx.doi.org/10.1103/PhysRev.120.91
16.
16. J. H. Franken, M. Herps, H. J. M. Swagten, and B. Koopmans, Sci. Rep. 4, 5248 (2014).
http://dx.doi.org/10.1038/srep05248
17.
17. K.-S. Ryu, S.-H. Yang, L. Thomas, and S. S. P. Parkin, Nat. Commun. 5, 3910 (2014).
http://dx.doi.org/10.1038/ncomms4910
18.
18. S. Emori, E. Martinez, K.-J. Lee, H.-W. Lee, U. Bauer, S.-m. Ahn, P. Agrawal, D. C. Bono, and G. S. D. Beach, Phys. Phys. B 90, 184427 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.184427
19.
19. M. J. Donahue and G. Porter, OOMMF User's Guide, Version 1.0 ( NIST, 1999).
20.
20. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, AIP Adv. 4, 107133 (2014).
http://dx.doi.org/10.1063/1.4899186
21.
21. R. Chang, S. Li, M. V. Lubarda, B. Livshitz, and V. Lomakin, J. Appl. Phys. 109, 07D358 (2011).
http://dx.doi.org/10.1063/1.3563081
22.
22. D. X. Chen, J. A. Brug, and R. B. Goldfarb, IEEE Trans. Magn. 27, 3601 (1991).
http://dx.doi.org/10.1109/20.102932
23.
23. R. Dittrich, T. Schrefl, D. Suess, W. Scholz, H. Forster, and J. Fidler, J. Magn. Magn. Mater. 250, 12 (2002).
http://dx.doi.org/10.1016/S0304-8853(02)00388-8
24.
24. I. Tudosa, M. V. Lubarda, K. T. Chan, M. A. Escobar, V. Lomakin, and E. E. Fullerton, Appl. Phys. Lett. 100, 102401 (2012).
http://dx.doi.org/10.1063/1.3692574
25.
25. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
http://dx.doi.org/10.1016/0304-8853(96)00062-5
26.
26. L. Berger, Phys. Rev. B 54, 9353 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.9353
27.
27.See supplementary material at http://dx.doi.org/10.1063/1.4944419 for details about the effects related to edge roughness, the intermediate states and the temperature dependence of jc0.[Supplementary Material]
28.
28. J. Z. Sun, Phys. Rev. B 62, 570 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.570
29.
29. J.-V. Kim, F. Garcia-Sanchez, C. Moreau-Luchaire, V. Cros, and A. Fert, Phys. Rev. B 90, 064410 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.064410
30.
30. A. Hrabec, N. A. Porter, A. Wells, M. J. Benitez, G. Burnell, S. McVitie, D. McGrouther, T. A. Moore, and C. H. Marrows, Phys. Rev. B 90, 020402 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.020402
31.
31. P.-H. Jang, K. Song, S.-J. Lee, S.-W. Lee, and S.-W. Lee, Appl. Phys. Lett. 107, 202401 (2015).
http://dx.doi.org/10.1063/1.4936089
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/11/10.1063/1.4944419
Loading
/content/aip/journal/apl/108/11/10.1063/1.4944419
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/11/10.1063/1.4944419
2016-03-16
2016-12-07

Abstract

In order to increase the thermal stability of a magnetic random access memory cell, materials with high spin-orbit interaction are often introduced in the storage layer. As a side effect, a strong Dzyaloshinskii-Moriya interaction (DMI) may arise in such systems. Here, we investigate the impact of DMI on the magnetic cell performance, using micromagnetic simulations. We find that DMI strongly promotes non-uniform magnetization states and non-uniform switching modes of the magnetic layer. It appears to be detrimental for both the thermal stability of the cell and its switching current, leading to considerable deterioration of the cell performance even for a moderate DMI amplitude.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/11/1.4944419.html;jsessionid=wd7a7SGrscMzCQvIi2fcHsZv.x-aip-live-03?itemId=/content/aip/journal/apl/108/11/10.1063/1.4944419&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/11/10.1063/1.4944419&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/11/10.1063/1.4944419'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,