Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. Gao, Z. Q. Liang, J. J. Tian, Q. F. Zhang, L. D. Wang, and G. Z. Cao, Nano Energy 2, 40 (2013).
2. Z. J. Wang, D. W. Cao, R. Xu, S. C. Qu, Z. G. Wang, and Y. Lei, Nano Energy 19, 328 (2016).
3. I. Concina and A. Vomiero, Small 11, 1744 (2015).
4. C. Howder, B. A. Long, D. M. Bell, K. H. Furakawa, R. C. Johnson, Z. Y. Fang, and S. L. Anderson, ACS Nano 8, 12534 (2014).
5. A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo, and H. Pettersson, Chem. Rev. 110, 6595 (2010).
6. Q. F. Zhang and G. Z. Cao, Nano Today 6, 91 (2011).
7. Q. F. Zhang, D. Myers, J. L. Lan, S. A. Jenekhe, and G. Z. Cao, Phys. Chem. Chem. Phys. 14, 14982 (2012).
8. L. Z. Liu, Y. Q. Chen, T. B. Guo, Y. Q. Zhu, Y. Su, C. Jia, M. Q. Wei, and Y. F. Cheng, ACS Appl. Mater. Interfaces 4, 17 (2012).
9. T. G. Deepak, G. S. Anjusree, S. Thomas, T. A. Arun, S. V. Nair, and A. Sreekumaran Nair, RSC Adv. 4, 17615 (2014).
10. Y. L. Xiong, D. P. He, Y. Jin, P. J. Cameron, and K. J. Edler, J. Phys. Chem. C 119, 22552 (2015).
11. S. Wooh, H. Yoon, J. H. Jung, Y. G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. H. Char, Adv Mater. 25, 3111 (2013).
12. Y. Park, J. W. Lee, S. J. Ha, and J. H. Moon, Nanoscale 6, 3105 (2014).
13. J. W. Feng, Y. Hong, J. Zhang, P. Q. Wang, Z. Y. Hu, Q. Wang, L. Y. Han, and Y. J. Zhu, J. Mater. Chem. A 2, 1502 (2014).
14. W. X. Song, H. Wang, G. C. Liu, M. Peng, and D. C. Zou, Nano Energy 19, 1 (2016).
15. M. Jalali, R. S. Moakhar, A. Kushwaha, G. K. Liang Goh, S. K. Sadrnezhaad, and N. Riahi-Noori, J. Appl. Electrochem 45, 831 (2015).
16. L. P. Lin, X. Peng, S. Chen, B. Zhang, and Y. Q. Feng, RSC Adv. 5, 25215 (2015).
17. S. H. Hwang, J. M. Roh, and J. Jang, Chem. Eur. J. 19, 13120 (2013).
18. T. Arakawa, T. Munaoka, T. Akiyama, and S. Yamada, J. Phys. Chem. C 113, 11830 (2009).
19. Q. Xu, F. Liu, Y. X. Liu, K. Y. Cui, X. Feng, W. Zhang, and Y. D. Huang, Sci. Rep. 3, 2112 (2013).
20. Q. F. Zhang, C. S. Dandeneau, X. Y. Zhou, and G. Z. Cao, Adv. Mater. 21, 4087 (2009).
21. X. H. Kang, C. Y. Jia, Z. Q. Wan, J. Zhuang, and J. Feng, RSC Adv. 5, 16678 (2015).
22. R. Gao, Z. Q. Liang, J. J. Tian, Q. F. Zhang, L. D. Wang, and G. Z. Cao, RSC Adv. 3, 18537 (2013).
23. Y. Z. Zheng, J. X. Zhao, H. Zhang, J. F. Chen, W. L. Zhou, and X. Tao, Chem. Commun. 47, 11519 (2011).
24. Y. C. Park, Y. J. Chang, B. G. Kum, E. H. Kong, J. Y. Son, Y. S. Kwon, T. Park, and H. M. Jang, J. Mater. Chem. 21, 9582 (2011).
25. I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, J. Mater. Chem. 21, 532 (2011).
26. Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, Angew. Chem., Int. Ed. 47, 2402 (2008).
27.' W. C. Chang, L. Y. Lin, and W. C. Yu, Electrochim. Acta 169, 456 (2015).
28. F. Z. Huang, D. H. Chen, L. X. Zhang, R. A. Caruso, and Y. B. Cheng, Adv. Funct. Mater. 20, 1301 (2010).
29. Y. T. Shi, C. Zhu, L. Wang, C. Y. Zhao, W. Li, K. K. Fung, T. Ma, A. Hagfeldt, and N. Wang, Chem. Mater. 25, 1000 (2013).
30. W. T. Jiang, C. T. Wu, Y. H. Sung, and J. J. Wu, ACS Appl. Mater. Interfaces 5, 911 (2013).
31. C. X. He, B. X. Lei, Y. F. Wang, C. Y. Su, Y. P. Fang, and D. B. Kuang, Chem. Eur. J. 16, 8757 (2010).
32. N. Memarian, I. Concina, A. Braga, S. M. Rozati, A. Vomiero, and G. Sberveglieri, Angew. Chem., Int. Ed. 123, 12529 (2011).
33. Z. Q. Li, W. C. Chen, F. L. Guo, L. W. E. Mo, L. H. Hu, and S. Y. Dai, Sci. Rep. 5, 14178 (2015).
34. E. Guillén, E. Azaceta, A. Vega-Poot, J. Idígoras, J. Echeberría, J. A. Anta, and R. Tena-Zaera, J. Phys. Chem. C 117, 13365 (2013).
35. V. M. Guerin, C. Magne, Th. Pauporté, T. Le Bahers, and J. Rathousky, ACS Appl. Mater. Interfaces 2, 3677 (2010).
36. J. Xu, Z. H. Chen, Z. P. Juan Antonio, C. L. Lee, and W. J. Zhang, Adv. Mater. 26, 5337 (2014).
37. K. Keis, J. Lindgren, S. E. Lindquist, and A. Hagfeldt, Langmuir 16, 4688 (2000).
38. P. X. Gao and Z. L. Wang, J. Am. Chem. Soc. 125, 11299 (2003).
39. X. Wang, Z. H. Chen, D. Q. Liu, W. Tian, Q. Wang, C. Zhang, J. W. Liu, L. Y. Han, Y. Bando, and D. Golberg, Part. Part. Syst. Charact. 31, 757 (2014).
40. W. W. Xia, C. Mei, X. H. Zeng, G. K. Fan, J. F. Lu, X. D. Meng, and X. S. Shen, ACS. Appl. Mater. Interfaces 7, 11824 (2015).
41. Z. H. Dong, X. Y. Lai, J. E. Halpert, N. L. Yang, L. X. Yi, J. Zhai, D. Wang, Z. Y. Tang, and L. Jiang, Adv. Mater. 24, 1046 (2012).
42. K. J. Hwang, J. Y. Park, S. H. Jin, S. O. Kang, and D. W. Cho, New J. Chem. 38, 6161 (2014).
43. A. Thapa, J. T. Zai, H. Elbohy, P. Poudel, N. Adhikari, X. F. Qian, and Q. Q. Qiao, Nano Res. 7, 1154 (2014).
44.See supplementary material at for the experimental design and SEM images of the products.[Supplementary Material]

Data & Media loading...


Article metrics loading...



Both light scattering and dye adsorbing are important for the power conversion efficiency PCE performance of dye sensitized solar cell(DSSC). Nanostructured scattering layers with a large specific surface area are regarded as an efficient way to improve the PCE by increasing dye adsorbing, but excess adsorbed dye will hinder light scattering and light penetration. Thus, how to balance the dye adsorbing and light penetration is a key problem to improve the PCE performance. Here, multiple-shelled ZnO microspheres with a mesoporous surface are fabricated by a hydrothermal method and are used as scattering layers on the TiO photoanode of the DSSC in the presence of N719 dye and iodine–based electrolyte, and the results reveal that the DSSCs based on triple shelled ZnO microsphere with a mesoporous surface exhibit an enhanced PCE of 7.66%, which is 13.0% higher than those without the scattering layers (6.78%), indicating that multiple-shelled microspheres with a mesoporous surface can ensure enough light scattering between the shells, and a favorable concentration of the adsorbed dye can improve the light penetration. These results may provide a promising pathway to obtain the high efficient DSSCs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd