Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/11/10.1063/1.4944532
1.
1. R. Gao, Z. Q. Liang, J. J. Tian, Q. F. Zhang, L. D. Wang, and G. Z. Cao, Nano Energy 2, 40 (2013).
http://dx.doi.org/10.1016/j.nanoen.2012.07.009
2.
2. Z. J. Wang, D. W. Cao, R. Xu, S. C. Qu, Z. G. Wang, and Y. Lei, Nano Energy 19, 328 (2016).
http://dx.doi.org/10.1016/j.nanoen.2015.11.032
3.
3. I. Concina and A. Vomiero, Small 11, 1744 (2015).
http://dx.doi.org/10.1002/smll.201402334
4.
4. C. Howder, B. A. Long, D. M. Bell, K. H. Furakawa, R. C. Johnson, Z. Y. Fang, and S. L. Anderson, ACS Nano 8, 12534 (2014).
http://dx.doi.org/10.1021/nn505374d
5.
5. A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo, and H. Pettersson, Chem. Rev. 110, 6595 (2010).
http://dx.doi.org/10.1021/cr900356p
6.
6. Q. F. Zhang and G. Z. Cao, Nano Today 6, 91 (2011).
http://dx.doi.org/10.1016/j.nantod.2010.12.007
7.
7. Q. F. Zhang, D. Myers, J. L. Lan, S. A. Jenekhe, and G. Z. Cao, Phys. Chem. Chem. Phys. 14, 14982 (2012).
http://dx.doi.org/10.1039/c2cp43089d
8.
8. L. Z. Liu, Y. Q. Chen, T. B. Guo, Y. Q. Zhu, Y. Su, C. Jia, M. Q. Wei, and Y. F. Cheng, ACS Appl. Mater. Interfaces 4, 17 (2012).
http://dx.doi.org/10.1021/am201425n
9.
9. T. G. Deepak, G. S. Anjusree, S. Thomas, T. A. Arun, S. V. Nair, and A. Sreekumaran Nair, RSC Adv. 4, 17615 (2014).
http://dx.doi.org/10.1039/c4ra01308e
10.
10. Y. L. Xiong, D. P. He, Y. Jin, P. J. Cameron, and K. J. Edler, J. Phys. Chem. C 119, 22552 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b06977
11.
11. S. Wooh, H. Yoon, J. H. Jung, Y. G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. H. Char, Adv Mater. 25, 3111 (2013).
http://dx.doi.org/10.1002/adma.201300085
12.
12. Y. Park, J. W. Lee, S. J. Ha, and J. H. Moon, Nanoscale 6, 3105 (2014).
http://dx.doi.org/10.1039/C3NR05520E
13.
13. J. W. Feng, Y. Hong, J. Zhang, P. Q. Wang, Z. Y. Hu, Q. Wang, L. Y. Han, and Y. J. Zhu, J. Mater. Chem. A 2, 1502 (2014).
http://dx.doi.org/10.1039/C3TA13523C
14.
14. W. X. Song, H. Wang, G. C. Liu, M. Peng, and D. C. Zou, Nano Energy 19, 1 (2016).
http://dx.doi.org/10.1016/j.nanoen.2015.11.006
15.
15. M. Jalali, R. S. Moakhar, A. Kushwaha, G. K. Liang Goh, S. K. Sadrnezhaad, and N. Riahi-Noori, J. Appl. Electrochem 45, 831 (2015).
http://dx.doi.org/10.1007/s10800-015-0852-x
16.
16. L. P. Lin, X. Peng, S. Chen, B. Zhang, and Y. Q. Feng, RSC Adv. 5, 25215 (2015).
http://dx.doi.org/10.1039/C5RA01938A
17.
17. S. H. Hwang, J. M. Roh, and J. Jang, Chem. Eur. J. 19, 13120 (2013).
http://dx.doi.org/10.1002/chem.201301518
18.
18. T. Arakawa, T. Munaoka, T. Akiyama, and S. Yamada, J. Phys. Chem. C 113, 11830 (2009).
http://dx.doi.org/10.1021/jp9018525
19.
19. Q. Xu, F. Liu, Y. X. Liu, K. Y. Cui, X. Feng, W. Zhang, and Y. D. Huang, Sci. Rep. 3, 2112 (2013).
http://dx.doi.org/10.1038/srep02112
20.
20. Q. F. Zhang, C. S. Dandeneau, X. Y. Zhou, and G. Z. Cao, Adv. Mater. 21, 4087 (2009).
http://dx.doi.org/10.1002/adma.200803827
21.
21. X. H. Kang, C. Y. Jia, Z. Q. Wan, J. Zhuang, and J. Feng, RSC Adv. 5, 16678 (2015).
http://dx.doi.org/10.1039/C4RA17063F
22.
22. R. Gao, Z. Q. Liang, J. J. Tian, Q. F. Zhang, L. D. Wang, and G. Z. Cao, RSC Adv. 3, 18537 (2013).
http://dx.doi.org/10.1039/c3ra41827h
23.
23. Y. Z. Zheng, J. X. Zhao, H. Zhang, J. F. Chen, W. L. Zhou, and X. Tao, Chem. Commun. 47, 11519 (2011).
http://dx.doi.org/10.1039/c1cc12772a
24.
24. Y. C. Park, Y. J. Chang, B. G. Kum, E. H. Kong, J. Y. Son, Y. S. Kwon, T. Park, and H. M. Jang, J. Mater. Chem. 21, 9582 (2011).
http://dx.doi.org/10.1039/c1jm11043h
25.
25. I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, J. Mater. Chem. 21, 532 (2011).
http://dx.doi.org/10.1039/C0JM02606A
26.
26. Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, Angew. Chem., Int. Ed. 47, 2402 (2008).
http://dx.doi.org/10.1002/anie.200704919
27.
27.' W. C. Chang, L. Y. Lin, and W. C. Yu, Electrochim. Acta 169, 456 (2015).
http://dx.doi.org/10.1016/j.electacta.2015.04.056
28.
28. F. Z. Huang, D. H. Chen, L. X. Zhang, R. A. Caruso, and Y. B. Cheng, Adv. Funct. Mater. 20, 1301 (2010).
http://dx.doi.org/10.1002/adfm.200902218
29.
29. Y. T. Shi, C. Zhu, L. Wang, C. Y. Zhao, W. Li, K. K. Fung, T. Ma, A. Hagfeldt, and N. Wang, Chem. Mater. 25, 1000 (2013).
http://dx.doi.org/10.1021/cm400220q
30.
30. W. T. Jiang, C. T. Wu, Y. H. Sung, and J. J. Wu, ACS Appl. Mater. Interfaces 5, 911 (2013).
http://dx.doi.org/10.1021/am302570r
31.
31. C. X. He, B. X. Lei, Y. F. Wang, C. Y. Su, Y. P. Fang, and D. B. Kuang, Chem. Eur. J. 16, 8757 (2010).
http://dx.doi.org/10.1002/chem.201000264
32.
32. N. Memarian, I. Concina, A. Braga, S. M. Rozati, A. Vomiero, and G. Sberveglieri, Angew. Chem., Int. Ed. 123, 12529 (2011).
http://dx.doi.org/10.1002/ange.201104605
33.
33. Z. Q. Li, W. C. Chen, F. L. Guo, L. W. E. Mo, L. H. Hu, and S. Y. Dai, Sci. Rep. 5, 14178 (2015).
http://dx.doi.org/10.1038/srep14178
34.
34. E. Guillén, E. Azaceta, A. Vega-Poot, J. Idígoras, J. Echeberría, J. A. Anta, and R. Tena-Zaera, J. Phys. Chem. C 117, 13365 (2013).
http://dx.doi.org/10.1021/jp402888y
35.
35. V. M. Guerin, C. Magne, Th. Pauporté, T. Le Bahers, and J. Rathousky, ACS Appl. Mater. Interfaces 2, 3677 (2010).
http://dx.doi.org/10.1021/am1008248
36.
36. J. Xu, Z. H. Chen, Z. P. Juan Antonio, C. L. Lee, and W. J. Zhang, Adv. Mater. 26, 5337 (2014).
http://dx.doi.org/10.1002/adma.201400403
37.
37. K. Keis, J. Lindgren, S. E. Lindquist, and A. Hagfeldt, Langmuir 16, 4688 (2000).
http://dx.doi.org/10.1021/la9912702
38.
38. P. X. Gao and Z. L. Wang, J. Am. Chem. Soc. 125, 11299 (2003).
http://dx.doi.org/10.1021/ja035569p
39.
39. X. Wang, Z. H. Chen, D. Q. Liu, W. Tian, Q. Wang, C. Zhang, J. W. Liu, L. Y. Han, Y. Bando, and D. Golberg, Part. Part. Syst. Charact. 31, 757 (2014).
http://dx.doi.org/10.1002/ppsc.201300365
40.
40. W. W. Xia, C. Mei, X. H. Zeng, G. K. Fan, J. F. Lu, X. D. Meng, and X. S. Shen, ACS. Appl. Mater. Interfaces 7, 11824 (2015).
http://dx.doi.org/10.1021/acsami.5b01333
41.
41. Z. H. Dong, X. Y. Lai, J. E. Halpert, N. L. Yang, L. X. Yi, J. Zhai, D. Wang, Z. Y. Tang, and L. Jiang, Adv. Mater. 24, 1046 (2012).
http://dx.doi.org/10.1002/adma.201104626
42.
42. K. J. Hwang, J. Y. Park, S. H. Jin, S. O. Kang, and D. W. Cho, New J. Chem. 38, 6161 (2014).
http://dx.doi.org/10.1039/C4NJ01459F
43.
43. A. Thapa, J. T. Zai, H. Elbohy, P. Poudel, N. Adhikari, X. F. Qian, and Q. Q. Qiao, Nano Res. 7, 1154 (2014).
http://dx.doi.org/10.1007/s12274-014-0478-z
44.
44.See supplementary material at http://dx.doi.org/10.1063/1.4944532 for the experimental design and SEM images of the products.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/11/10.1063/1.4944532
Loading
/content/aip/journal/apl/108/11/10.1063/1.4944532
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/11/10.1063/1.4944532
2016-03-16
2016-12-08

Abstract

Both light scattering and dye adsorbing are important for the power conversion efficiency PCE performance of dye sensitized solar cell(DSSC). Nanostructured scattering layers with a large specific surface area are regarded as an efficient way to improve the PCE by increasing dye adsorbing, but excess adsorbed dye will hinder light scattering and light penetration. Thus, how to balance the dye adsorbing and light penetration is a key problem to improve the PCE performance. Here, multiple-shelled ZnO microspheres with a mesoporous surface are fabricated by a hydrothermal method and are used as scattering layers on the TiO photoanode of the DSSC in the presence of N719 dye and iodine–based electrolyte, and the results reveal that the DSSCs based on triple shelled ZnO microsphere with a mesoporous surface exhibit an enhanced PCE of 7.66%, which is 13.0% higher than those without the scattering layers (6.78%), indicating that multiple-shelled microspheres with a mesoporous surface can ensure enough light scattering between the shells, and a favorable concentration of the adsorbed dye can improve the light penetration. These results may provide a promising pathway to obtain the high efficient DSSCs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/11/1.4944532.html;jsessionid=-X-ylBNezOoi3GWSPWOBjT6v.x-aip-live-03?itemId=/content/aip/journal/apl/108/11/10.1063/1.4944532&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/11/10.1063/1.4944532&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/11/10.1063/1.4944532'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,