Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/12/10.1063/1.4944459
1.
1. P. U. Jepsen, D. G. Cooke, and M. Koch, “ Terahertz spectroscopy and imaging—Modern techniques and applications,” Laser Photonics Rev. 5, 124 (2011).
http://dx.doi.org/10.1002/lpor.201000011
2.
2. M. Tonouchi, “ Cutting-edge terahertz technology,” Nat. Photonics 1, 97 (2007).
http://dx.doi.org/10.1038/nphoton.2007.3
3.
3. R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “ Carrier dynamics in semiconductors studied with time resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.543
4.
4. Y.-S. Lee, Principles of Terahertz Science and Technology ( Springer, Berlin, 2009).
5.
5. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “ How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286 (2001).
http://dx.doi.org/10.1038/35104522
6.
6. R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, and D. S. Chemla, “ Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas,” Nature 423, 734 (2003).
http://dx.doi.org/10.1038/nature01676
7.
7. M. Porer, U. Leierseder, J.-M. Ménard, H. Dachraoui, L. Mouchliadis, I. E. Perakis, U. Heinzmann, J. Demsar, K. Rossnagel, and R. Huber, “ Non-thermal separation of electronic and structural orders in a persisting charge density wave,” Nat. Mater. 13, 857 (2014).
http://dx.doi.org/10.1038/nmat4042
8.
8. A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, “ Femtosecond response of quasiparticles and phonons in superconducting YBCO studied by wideband terahertz spectroscopy,” Phys. Rev. Lett. 105, 067001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.067001
9.
9. T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “ Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31 (2011).
http://dx.doi.org/10.1038/nphoton.2010.259
10.
10. T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “ Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256 (2013).
http://dx.doi.org/10.1038/nnano.2013.43
11.
11. A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “ Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst 137, 575 (2012).
http://dx.doi.org/10.1039/C2AN15820E
12.
12. V. C. Nibali and M. Havenith, “ New insights into the role of water in biological function: Studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations,” J. Am. Chem. Soc. 136, 12800 (2014).
http://dx.doi.org/10.1021/ja504441h
13.
13. A. Markelz, S. Whitmire, J. Hillebrecht, and R. Birge, “ THz time domain spectroscopy of biomolecular conformational modes,” Phys. Med. Biol. 47, 3797 (2002).
http://dx.doi.org/10.1088/0031-9155/47/21/318
14.
14. D. Mittleman, Sensing with Terahertz Radiation, Springer Series in Optical Sciences ( Springer, Berlin, 2003), p. 117.
15.
15. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “ Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549 (2003).
http://dx.doi.org/10.1364/OE.11.002549
16.
16. W. L. Chan, J. Deibel, and D. M. Mittleman, “ Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).
http://dx.doi.org/10.1088/0034-4885/70/8/R02
17.
17. R. Chakkittakandy, J. Corver, and P. Planken, “ Quasi-near field terahertz generation and detection,” Opt. Express 16, 12794 (2008).
http://dx.doi.org/10.1364/OE.16.012794
18.
18. D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “ High-speed terahertz time-domain spectroscopy of cyclotron resonance in pulsed magnetic field,” Opt. Express 18, 26163 (2010).
http://dx.doi.org/10.1364/OE.18.026163
19.
19. N. Chen and Q. Zhu, “ Rotary mirror array for high-speed optical coherence tomography,” Opt. Lett. 27, 607 (2002).
http://dx.doi.org/10.1364/OL.27.000607
20.
20. G. Klatt, R. Gebs, C. Janke, T. Dekorsy, and A. Bartels, “ Rapid-scanning terahertz precision spectrometer with more than 6 THz spectral coverage,” Opt. Express 17, 22847 (2009).
http://dx.doi.org/10.1364/OE.17.022847
21.
21. S. Kray, F. Spöler, T. Hellerer, and H. Kurz, “ Electronically controlled coherent linear optical sampling for optical coherence tomography,” Opt. Express 18, 9976 (2010).
http://dx.doi.org/10.1364/OE.18.009976
22.
22. Y. Kim and D.-S. Yee, “ High-speed terahertz time-domain spectroscopy based on electronically controlled optical sampling,” Opt. Lett. 35, 3715 (2010).
http://dx.doi.org/10.1364/OL.35.003715
23.
23. R. Dietz, N. Viehweg, T. Puppe, A. Zach, B. Globisch, T. Göbel, P. Leisching, and M. Schell, “ All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling,” Opt. Lett. 39, 6482 (2014).
http://dx.doi.org/10.1364/OL.39.006482
24.
24. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “ Optical sampling by laser cavity tuning,” Opt. Express 18, 1613 (2010).
http://dx.doi.org/10.1364/OE.18.001613
25.
25. O. Schubert, M. Eisele, V. Crozatier, N. Forget, D. Kaplan, and R. Huber, “ Rapid-scan acousto-optical delay line with 34 kHz scan rate and 15 as precision,” Opt. Lett. 38, 2907 (2013).
http://dx.doi.org/10.1364/OL.38.002907
26.
26. P. Tournois, “ Acousto-optical programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140, 245 (1997).
http://dx.doi.org/10.1016/S0030-4018(97)00153-3
27.
27. I. Znakovskaya, E. Fill, N. Forget, P. Tournois, M. Seidel, O. Pronin, F. Krausz, and A. Apolonski, “ Dual frequency comb spectroscopy with a single laser,” Opt. Lett. 39, 5471 (2014).
http://dx.doi.org/10.1364/OL.39.005471
28.
28. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “ Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33 (2010).
http://dx.doi.org/10.1038/nphoton.2009.258
29.
29. F. Brunner, O. Kwon, S. Kwon, M. Jazbinšek, A. Schneider, and P. Günter, “ A hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection,” Opt. Express 16, 16496 (2008).
http://dx.doi.org/10.1364/OE.16.016496
30.
30. N. Palka, S. Krimi, F. Ospald, D. Miedzinska, R. Gieleta, M. Malek, and R. Beigang, “ Precise determination of thicknesses of multilayer polyethylene composite materials by terahertz time-domain spectroscopy,” J. Infrared Millimeter Terahertz Waves 36, 578 (2015).
http://dx.doi.org/10.1007/s10762-015-0156-6
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/12/10.1063/1.4944459
Loading
/content/aip/journal/apl/108/12/10.1063/1.4944459
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/12/10.1063/1.4944459
2016-03-21
2016-12-07

Abstract

We present a rapid-scan, time-domain terahertz spectrometer employing femtosecond Er:fiber technology and an acousto-optic delay with attosecond precision, enabling scanning of terahertz transients over a 12.4-ps time window at a waveform refresh rate of 36 kHz, and a signal-to-noise ratio of 1.7 × 105. Our approach enables real-time monitoring of dynamic THz processes at unprecedented speeds, which we demonstrate through rapid 2D thickness mapping of a spinning teflon disc at a precision of 10 nm/. The compact, all-optical design ensures alignment-free operation even in harsh environments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/12/1.4944459.html;jsessionid=AsB4nHRjXVtLQxB8WZ1Dh-d2.x-aip-live-03?itemId=/content/aip/journal/apl/108/12/10.1063/1.4944459&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/12/10.1063/1.4944459&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/12/10.1063/1.4944459'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,