Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/12/10.1063/1.4944462
1.
1. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grunzweig, and C. David, Nat. Mater. 7(2), 134137 (2008).
http://dx.doi.org/10.1038/nmat2096
2.
2. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, Nat. Phys. 2(4), 258261 (2006).
http://dx.doi.org/10.1038/nphys265
3.
3. E. Pagot, P. Cloetens, S. Fiedler, A. Bravin, P. Coan, J. Baruchel, J. Härtwig, and W. Thomlinson, Appl. Phys. Lett. 82(20), 34213423 (2003).
http://dx.doi.org/10.1063/1.1575508
4.
4. A. Olivo and R. Speller, Appl. Phys. Lett. 91(7), 074106074103 (2007).
http://dx.doi.org/10.1063/1.2772193
5.
5. C. David, B. Nohammer, H. H. Solak, and E. Ziegler, Appl. Phys. Lett. 81(17), 32873289 (2002).
http://dx.doi.org/10.1063/1.1516611
6.
6. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, Jpn. J. Appl. Phys., Part 2 42, L866L868 (2003).
http://dx.doi.org/10.1143/JJAP.42.L866
7.
7. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, Nature 384(6607), 335338 (1996).
http://dx.doi.org/10.1038/384335a0
8.
8. F. A. Vittoria, M. Endrizzi, P. C. Diemoz, U. H. Wagner, C. Rau, I. K. Robinson, and A. Olivo, Appl. Phys. Lett. 104(13), 134102 (2014).
http://dx.doi.org/10.1063/1.4870528
9.
9. F. Pfeiffer, O. Bunk, C. David, M. Bech, G. L. Duc, A. Bravin, and P. Cloetens, Phys. Med. Biol. 52(23), 6923 (2007).
http://dx.doi.org/10.1088/0031-9155/52/23/010
10.
10. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, Opt. Express 13(16), 62966304 (2005).
http://dx.doi.org/10.1364/OPEX.13.006296
11.
11. P. Cloetens, W. Ludwig, J. Baruchel, D. V. Dyck, J. V. Landuyt, J. P. Guigay, and M. Schlenker, Appl. Phys. Lett. 75(19), 29122914 (1999).
http://dx.doi.org/10.1063/1.125225
12.
12. B. S. Magdalena, P. M. Thomas, I. Konstantin, D. S. Robert, and O. Alessandro, Phys. Med. Biol. 59(5), N1 (2014).
http://dx.doi.org/10.1088/0031-9155/59/5/N1
13.
13. A. Momose, T. Takeda, Y. Itai, and K. Hirano, Nat. Med. 2(4), 473475 (1996).
http://dx.doi.org/10.1038/nm0496-473
14.
14. M. Bech, O. Bunk, T. Donath, R. Feidenhans'l, C. David, and F. Pfeiffer, Phys. Med. Biol. 55(18), 5529 (2010).
http://dx.doi.org/10.1088/0031-9155/55/18/017
15.
15. A. Sarapata, M. Ruiz-Yaniz, I. Zanette, A. Rack, F. Pfeiffer, and J. Herzen, Appl. Phys. Lett. 106(15), 154102 (2015).
http://dx.doi.org/10.1063/1.4918617
16.
16. P. Coan, A. Bravin, and G. Tromba, J. Phys. D: Appl. Phys. 46(49), 494007 (2013).
http://dx.doi.org/10.1088/0022-3727/46/49/494007
17.
17. B. Alberto, C. Paola, and S. Pekka, Phys. Med. Biol. 58(1), R1 (2013).
http://dx.doi.org/10.1088/0031-9155/58/1/R1
18.
18. S. Schleede, F. G. Meinel, M. Bech, J. Herzen, K. Achterhold, G. Potdevin, A. Malecki, S. Adam-Neumair, S. F. Thieme, F. Bamberg, K. Nikolaou, A. Bohla, A. Ö. Yildirim, R. Loewen, M. Gifford, R. Ruth, O. Eickelberg, M. Reiser, and F. Pfeiffer, Proc. Natl. Acad. Sci. U.S.A. 109(44), 1788017885 (2012).
http://dx.doi.org/10.1073/pnas.1206684109
19.
19. I. Zanette, M. Bech, A. Rack, G. Le Duc, P. Tafforeau, C. David, J. Mohr, F. Pfeiffer, and T. Weitkamp, Proc. Natl. Acad. Sci. U.S.A. 109(26), 1019910204 (2012).
http://dx.doi.org/10.1073/pnas.1117861109
20.
20. P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, Proc. Natl. Acad. Sci. U.S.A. 107(31), 1357613581 (2010).
http://dx.doi.org/10.1073/pnas.1003198107
21.
21. Y. Zhao, E. Brun, P. Coan, Z. Huang, A. Sztrókay, P. C. Diemoz, S. Liebhardt, A. Mittone, S. Gasilov, J. Miao, and A. Bravin, Proc. Natl. Acad. Sci. U.S.A. 109(45), 1829018294 (2012).
http://dx.doi.org/10.1073/pnas.1204460109
22.
22. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, Rev. Sci. Instrum. 66(12), 54865492 (1995).
http://dx.doi.org/10.1063/1.1146073
23.
23. K. S. Morgan, D. M. Paganin, and K. K. W. Siu, Appl. Phys. Lett. 100(12), 124102124104 (2012).
http://dx.doi.org/10.1063/1.3694918
24.
24. S. Berujon, E. Ziegler, R. Cerbino, and L. Peverini, Phys. Rev. Lett. 108(15), 158102 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.158102
25.
25. H. Wang, S. Berujon, J. Herzen, R. Atwood, D. Laundy, A. Hipp, and K. Sawhney, Sci. Rep. 5, 8762 (2015).
http://dx.doi.org/10.1038/srep08762
26.
26. S. Berujon, H. Wang, and K. Sawhney, Phys. Rev. A 86(6), 063813 (2012).
http://dx.doi.org/10.1103/PhysRevA.86.063813
27.
27. T. Zhou, I. Zanette, M.-C. Zdora, U. Lundström, D. H. Larsson, H. M. Hertz, F. Pfeiffer, and A. Burvall, Opt. Lett. 40(12), 28222825 (2015).
http://dx.doi.org/10.1364/OL.40.002822
28.
28. H. Wang, Y. Kashyap, and K. Sawhney, Sci. Rep. 6, 20476 (2016).
http://dx.doi.org/10.1038/srep20476
29.
29. K. Gocha, G. B. Jovan, C. Dean, A. A. Mark, Y. Yongyi, Z. Zhong, and N. W. Miles, Phys. Med. Biol. 51(2), 221 (2006).
http://dx.doi.org/10.1088/0031-9155/51/2/003
30.
30. Z.-T. Wang, K.-J. Kang, Z.-F. Huang, and Z.-Q. Chen, Appl. Phys. Lett. 95(9), 094105 (2009).
http://dx.doi.org/10.1063/1.3213557
31.
31. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, Opt. Lett. 33(2), 156158 (2008).
http://dx.doi.org/10.1364/OL.33.000156
32.
32. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. ( Roberts & Company Publishers, 2005).
33.
33. H. Wang, Y. Kashyap, and K. Sawhney, Phys. Rev. Lett. 114(10), 103901 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.103901
34.
34. H. Wang, Y. Kashyap, and K. Sawhney, Opt. Express 23(18), 2331023317 (2015).
http://dx.doi.org/10.1364/OE.23.023310
35.
35. K. J. S. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, AIP Conf. Proc. 1234(1), 387390 (2010).
http://dx.doi.org/10.1063/1.3463220
36.
36. B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54(2), 181342 (1993).
http://dx.doi.org/10.1006/adnd.1993.1013
37.
37. Y. Yang and X. Tang, Med. Phys. 39(12), 72377253 (2012).
http://dx.doi.org/10.1118/1.4764901
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/12/10.1063/1.4944462
Loading
/content/aip/journal/apl/108/12/10.1063/1.4944462
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/12/10.1063/1.4944462
2016-03-21
2016-09-28

Abstract

X-ray dark-field contrast tomography can provide important supplementary information inside a sample to the conventional absorption tomography. Recently, the X-rayspeckle based technique has been proposed to provide qualitative two-dimensional dark-field imaging with a simple experimental arrangement. In this letter, we deduce a relationship between the second moment of scattering angle distribution and cross-correlation degradation of speckle and establish a quantitative basis of X-ray dark-field tomography using single directional speckle scanning technique. In addition, the phase contrast images can be simultaneously retrieved permitting tomographic reconstruction, which yields enhanced contrast in weakly absorbing materials. Such complementary tomography technique can allow systematic investigation of complex samples containing both soft and hard materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/12/1.4944462.html;jsessionid=OOWVaRJAaNMKEFyqJqzlT9YB.x-aip-live-02?itemId=/content/aip/journal/apl/108/12/10.1063/1.4944462&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/12/10.1063/1.4944462&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/12/10.1063/1.4944462'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,