Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/14/10.1063/1.4945268
1.
1. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.136805
2.
2. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
http://dx.doi.org/10.1021/nl903868w
3.
3. J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao et al., Nat. Commun. 4, 1474 (2013).
http://dx.doi.org/10.1038/ncomms2498
4.
4. A. Kormanyos, V. Zolyomi, N. D. Drummond, and G. Burkard, Phys. Rev. X 4, 011034 (2014).
http://dx.doi.org/10.1103/PhysRevX.4.011034
5.
5. G.-B. Liu, H. Pang, Y. Yao, and W. Yao, New J. Phys. 16, 105011 (2014).
http://dx.doi.org/10.1088/1367-2630/16/10/105011
6.
6. Y. Wu, Q. Tong, G.-B. Liu, H. Yu, and W. Yao, Phys. Rev. B 93, 045313 (2016).
http://dx.doi.org/10.1103/PhysRevB.93.045313
7.
7. K. He, C. Poole, K. F. Mak, and J. Shan, Nano letters 13, 2931 (2013).
http://dx.doi.org/10.1021/nl4013166
8.
8. K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, Science 344, 1489 (2014).
http://dx.doi.org/10.1126/science.1250140
9.
9. X. Xu, D. Xiao, T. F. Heinz, and W. Yao, Nat. Phys. 10, 343 (2014).
http://dx.doi.org/10.1038/nphys2942
10.
10. G. Wei, D. A. Czaplewski, E. J. Lenferink, T. K. Stanev, I. W. Jung, and N. P. Stern, e-print arXiv:1510.09135.
11.
11. J. P. Wilcoxon, P. P. Newcomer, and G. A. Samara, J. Appl. Phys. 81, 7934 (1997).
http://dx.doi.org/10.1063/1.365367
12.
12. J. Huang and D. Kelley, Chem. Mater. 12, 2825 (2000).
http://dx.doi.org/10.1021/cm0002517
13.
13. J. M. Huang, R. A. Laitinen, and D. F. Kelley, Phys. Rev. B 62, 10995 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.10995
14.
14. V. Chikan and D. Kelley, J. Phys. Chem. B 106, 3794 (2002).
http://dx.doi.org/10.1021/jp011898x
15.
15. J. Etzkorn, H. A. Therese, F. Rocker, N. Zink, U. Kolb, and W. Tremel, Adv. Mater. 17, 2372 (2005).
http://dx.doi.org/10.1002/adma.200500850
16.
16. L. Lin, Y. Xu, S. Zhang, I. M. Ross, A. C. Ong, and D. A. Allwood, ACS Nano 7, 8214 (2013).
http://dx.doi.org/10.1021/nn403682r
17.
17. T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, Nat. Nanotechnol. 11, 37 (2016).
http://dx.doi.org/10.1038/nnano.2015.242
18.
18. L. ping Feng, J. Su, and Z. Tang Liu, J. Alloys Compd. 613, 122 (2014); ISSN 0925–8388.
http://dx.doi.org/10.1016/j.jallcom.2014.06.018
19.
19. S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou et al., Sci. Rep. 3, 2657 (2013).
http://dx.doi.org/10.1038/srep02657
20.
20. W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J.-C. Idrobo, Nano Lett. 13, 2615 (2013).
http://dx.doi.org/10.1021/nl4007479
21.
21. Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill et al., Phys. Rev. Lett. 113, 266804 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.266804
22.
22. D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, Phys. Rev. Lett. 114, 037401 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.037401
23.
23. G. Wang, L. Bouet, M. M. Glazov, T. Amand, E. L. Ivchenko, E. Palleau, X. Marie, and B. Urbaszek, 2D Mater. 2, 034002 (2015).
http://dx.doi.org/10.1088/2053-1583/2/3/034002
24.
24. M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, Nat. Nanotechnol. 10, 503 (2015).
http://dx.doi.org/10.1038/nnano.2015.67
25.
25. A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, Nat. Nanotechnol. 10, 491 (2015).
http://dx.doi.org/10.1038/nnano.2015.60
26.
26. Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu et al., Nat. Nanotechnol. 10, 497 (2015).
http://dx.doi.org/10.1038/nnano.2015.75
27.
27. C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, Nat. Nanotechnol. 10, 507 (2015).
http://dx.doi.org/10.1038/nnano.2015.79
28.
28. P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. M. de Vasconcellos, and R. Bratschitsch, Optica 2, 347 (2015).
http://dx.doi.org/10.1364/OPTICA.2.000347
29.
29. S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, Nano Lett. 15, 7567 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b03312
30.
30. H. Dery and Y. Song, Phys. Rev. B 92, 125431 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.125431
31.
31. X.-X. Zhang, Y. You, S. Y. F. Zhao, and T. F. Heinz, Phys. Rev. Lett. 115, 257403 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.257403
32.
32. G. Wang, C. Robert, A. Suslu, B. Chen, S. Yang, S. Alamdari, I. C. Gerber, T. Amand, X. Marie, S. Tongay et al., Nat. Commun. 6, 10110 (2015).
http://dx.doi.org/10.1038/ncomms10110
33.
33. A. Arora, K. Nogajewski, M. Molas, M. Koperski, and M. Potemski, Nanoscale 7, 20769 (2015).
http://dx.doi.org/10.1039/C5NR06782K
34.
34. J. P. Echeverry, B. Urbaszek, T. Amand, X. Marie, and I. C. Gerber, Phys. Rev. B 93, 121107 (2016).
http://dx.doi.org/10.1103/PhysRevB.93.121107
35.
35. F. Withers, O. D. Pozo-Zamudio, S. Schwarz, S. Dufferwiel, P. M. Walker, T. Godde, A. P. Rooney, A. Gholinia, C. R. Woods, P. Blake et al., Nano Lett. 15, 8223 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b03740
36.
36. A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, 2D Mater. 1, 011002 (2014).
http://dx.doi.org/10.1088/2053-1583/1/1/011002
37.
37. G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, Phys. Rev. B 90, 075413 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.075413
38.
38. Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen et al., Nat. Nanotechnol. 9, 111 (2014).
http://dx.doi.org/10.1038/nnano.2013.277
39.
39. G. Wang, I. C. Gerber, L. Bouet, D. Lagarde, A. Balocchi, M. Vidal, T. Amand, X. Marie, and B. Urbaszek, 2D Mater. 2, 045005 (2015).
http://dx.doi.org/10.1088/2053-1583/2/4/045005
40.
40. G. Wang, E. Palleau, T. Amand, S. Tongay, X. Marie, and B. Urbaszek, Appl. Phys. Lett. 106, 112101 (2015).
http://dx.doi.org/10.1063/1.4916089
41.
41. J. Mertens, Y. Shi, A. Molina-Snchez, L. Wirtz, H. Y. Yang, and J. J. Baumberg, Appl. Phys. Lett. 104, 191105 (2014).
http://dx.doi.org/10.1063/1.4876475
42.
42. U. Bhanu, M. R. Islam, L. Tetard, and S. I. Khondaker, Sci. Rep. 4, 5575 (2014).
http://dx.doi.org/10.1038/srep05575
43.
43. D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Phys. Rev. Lett. 111, 216805 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.216805
44.
44. A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Phys. Rev. Lett. 113, 076802 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.076802
45.
45. A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, Nat. Phys. 11, 141 (2015).
http://dx.doi.org/10.1038/nphys3203
46.
46. G. Aivazian, Z. Gong, A. M. Jones, R.-L. Chu, J. Yan, D. G. Mandrus, C. Zhang, D. Cobden, W. Yao, and X. Xu, Nat. Phys. 11, 148 (2015).
http://dx.doi.org/10.1038/nphys3201
47.
47. A. V. Stier, K. M. McCreary, B. T. Jonker, J. Kono, and S. A. Crooker, Nat. Commun. 7, 10643 (2016).
http://dx.doi.org/10.1038/ncomms10643
48.
48. D. Gammon, E. Snow, B. Shanabrook, D. Katzer, and D. Park, Phys. Rev. Lett. 76, 3005 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.3005
49.
49. V. D. Kulakovskii, G. Bacher, R. Weigand, T. Kümmell, A. Forchel, E. Borovitskaya, K. Leonardi, and D. Hommel, Phys. Rev. Lett. 82, 1780 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1780
50.
50. R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, Nature 405, 926 (2000).
http://dx.doi.org/10.1038/35016030
51.
51. X. Liu, T. Galfsky, Z. Sun, F. Xia, E.-c. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, Nat. Photonics 9, 30 (2015).
http://dx.doi.org/10.1038/nphoton.2014.304
52.
52. The optical transitions at the direct gap at the K-point for the 2D excitons are dominated by the transition metal d-states. The hyperfine coupling between carrier and nuclear spins is therefore of dipolar nature, similar to valence holes in III-V quantum dots. About 25.5% of the Mo atoms have non-zero spin (5/2); see Ref. 6 for details of the hyperfine interaction of confined states in TMD MLs.
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/14/10.1063/1.4945268
Loading
/content/aip/journal/apl/108/14/10.1063/1.4945268
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/14/10.1063/1.4945268
2016-04-04
2016-12-06

Abstract

Transition metal dichalcogenide monolayers such as MoSe, MoS, and WSe are direct bandgap semiconductors with original optoelectronic and spin-valley properties. Here we report on spectrally sharp, spatially localized emission in monolayer MoSe. We find this quantum dot-like emission in samples exfoliated onto gold substrates and also suspended flakes. Spatial mapping shows a correlation between the location of emitters and the existence of wrinkles (strained regions) in the flake. We tune the emission properties in magnetic and electric fields applied perpendicular to the monolayer plane. We extract an excitong-factor of the discrete emitters close to −4, as for 2D excitons in this material. In a charge tunable sample, we record discrete jumps on the meV scale as charges are added to the emitter when changing the applied voltage.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/14/1.4945268.html;jsessionid=p0lVVpODZpUw_2NNXsLi1cIl.x-aip-live-06?itemId=/content/aip/journal/apl/108/14/10.1063/1.4945268&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/14/10.1063/1.4945268&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/14/10.1063/1.4945268'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,