Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/15/10.1063/1.4946855
1.
1. D. Wang, Q. Wang, A. Javey, R. Tu, and H. Dai, Appl. Phys. Lett. 83, 2432 (2003).
http://dx.doi.org/10.1063/1.1611644
2.
2. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science 293, 1289 (2001).
http://dx.doi.org/10.1126/science.1062711
3.
3. M. Chau, O. Englander, and L. Lin, in Proceedings of the 3rd IEEE Conference on Nanotechnology, San Francisco, 2003.
4.
4. C. K. Chan, H. Peng, G. Lui, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nat. Nanotechnol. 3, 31 (2008).
http://dx.doi.org/10.1038/nnano.2007.411
5.
5. A. S. Paulo, N. Arellano, J. Plaza, R. He, C. Carraro, R. Maboudian, R. T. Howe, J. Bokor, and P. D. Yang, Nano Lett. 7, 1100 (2007).
http://dx.doi.org/10.1021/nl062877n
6.
6. C. L. Hsin, W. Mai, Y. Gu, Y. Gao, C. T. Huang, Y. Liu, L. J. Chen, and Z. L. Wang, Adv. Mater. 20, 3919 (2008).
http://dx.doi.org/10.1002/adma.200800485
7.
7. X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, and D. P. Yu, Adv. Mater. 21, 4937 (2009).
http://dx.doi.org/10.1002/adma.200900956
8.
8. T. Zhu and J. Li, Prog. Mater. Sci. 55, 710 (2010).
http://dx.doi.org/10.1016/j.pmatsci.2010.04.001
9.
9. R. A. Minamisawa, M. J. Süess, R. Spolenak, J. Faist, C. David, J. Gobrecht, K. K. Bourdelle, and H. Sigg, Nat. Commun. 3, 1096 (2012).
http://dx.doi.org/10.1038/ncomms2102
10.
10. K. Zheng, R. W. Shao, Q. S. Deng, Y. F. Zhang, Y. Li, X. D. Han, Z. Zhang, and J. Zou, Appl. Phys. Lett. 104, 013111 (2014).
http://dx.doi.org/10.1063/1.4861425
11.
11. M. Menon, D. Srivastava, I. Ponomareva, and L. A. Chernozatonskii, Phys. Rev. B 70, 125313 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.125313
12.
12. K. Zheng, X. D. Han, L. H. Wang, Y. F. Zhang, Y. H. Yue, Y. Qin, X. N. Zhang, and Z. Zhang, Nano Lett. 9, 2471 (2009).
http://dx.doi.org/10.1021/nl9012425
13.
13. X. D. Han, K. Zheng, Y. F. Zhang, X. N. Zhang, Z. Zhang, and Z. L. Wang, Adv. Mater. 19, 21122118 (2007).
http://dx.doi.org/10.1002/adma.200602705
14.
14. G. Stan, S. Krylyuk, A. V. Davydov, I. Levin, and R. F. Cook, Nano Lett. 12, 2599 (2012).
http://dx.doi.org/10.1021/nl300957a
15.
15. D. Chrobak, N. Tymiak, A. Beaber, O. Ugurlu, W. W. Gerberich, and R. Nowak, Nat. Nanotechnol. 6, 480 (2011).
http://dx.doi.org/10.1038/nnano.2011.118
16.
16. L. Pizzagalli, J. Godet, J. Guénolé, S. Brochard, E. Holmstrom, K. Nordlund, and T. Albaret, J. Phys.: Condens. Matter. 25, 055801 (2013).
http://dx.doi.org/10.1088/0953-8984/25/5/055801
17.
17. X. D. Han, Y. F. Zhang, K. Zheng, X. N. Zhang, and Z. Zhang, Nano Lett. 7, 452 (2007).
http://dx.doi.org/10.1021/nl0627689
18.
18. J. Guénolé, S. Brochard, and J. Godet, Acta Mater. 59, 7464 (2011).
http://dx.doi.org/10.1016/j.actamat.2011.08.039
19.
19. J. Godet, L. Pizzagalli, S. Brochard, and P. Beauchamp, Comput. Mater. Sci. 30, 16 (2004).
http://dx.doi.org/10.1016/j.commatsci.2004.01.004
20.
20. P. Valentini, W. W. Gerberich, and T. Dumitrica, Phys. Rev. Lett. 99, 175701 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.175701
21.
21. A. J. Wagner, E. D. Hintsala, P. Kumar, W. W. Gerberich, and K. A. Mkhoyan, Acta Mater. 100, 256 (2015).
http://dx.doi.org/10.1016/j.actamat.2015.08.029
22.
22. X. Z. Liao, Y. H. Zhao, Y. T. Zhu, R. Z. Valiev, and D. V. Gunderov, J. Appl. Phys. 96, 636 (2004).
http://dx.doi.org/10.1063/1.1757035
23.
23. K. Zheng, C. C. Wang, Y. Q. Cheng, Y. H. Yue, X. D. Han, Z. Zhang, Z. W. Shan, S. X. Mao, M. M. Ye, Y. D. Yin, and E. Ma, Nat. Commun. 1, 24 (2010).
http://dx.doi.org/10.1038/ncomms1021
24.
24. L. D. Landau and E. M. Lifshitz, Theory of Elasticity ( Pergamon Press, New York, 1986).
25.
25. P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. De Heer, Science 283, 1513 (1999).
http://dx.doi.org/10.1126/science.283.5407.1513
26.
26. R. Madec, B. Devincre, L. Kubin, T. Hoc, and D. Rodney, Science 301, 1879 (2003).
http://dx.doi.org/10.1126/science.1085477
27.
27. D. Rodney and R. Phillips, Phys. Rev. Lett. 82, 1704 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1704
28.
28. P. T. Bao, Y. B. Wang, X. Y. Cui, Q. Gao, H. W. Yen, H. W. Liu, W. K. Yeoh, X. Z. Liao, S. C. Du, H. H. Tan, Ch. Jagadish, J. Zou, S. P. Ringer, and R. K. Zheng, Appl. Phys. Lett. 104, 021904 (2014).
http://dx.doi.org/10.1063/1.4861846
29.
29. N. E. Dowling, Mechanical Behavior of Materials ( Prentice Hall, Englewood Cliffs, NJ, 1999), ISBN: 0-13-905720-X.
30.
30. C. Z. Wang, J. Li, K. M. Ho, and S. Yip, Appl. Phys. Lett. 89, 051910 (2006).
http://dx.doi.org/10.1063/1.2236620
31.
31. I. L. F. Ray and D. J. H. Cockayne, Proc. R. Soc. London, Ser. A 325, 543 (1971).
http://dx.doi.org/10.1098/rspa.1971.0184
32.
32. J. Zou and D. J. H. Cockayne, Phys. Rev. B 49, 8086 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.8086
33.
33. J. Zou, X. Z. Liao, D. J. H. Cockayne, and Z. M. Jiang, Appl. Phys. Lett. 81, 1996 (2002).
http://dx.doi.org/10.1063/1.1506414
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/15/10.1063/1.4946855
Loading
/content/aip/journal/apl/108/15/10.1063/1.4946855
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/15/10.1063/1.4946855
2016-04-14
2016-09-30

Abstract

In this study, the deformation mechanisms of bent Si nanowires are investigated at the atomic scale with bending strain up to 12.8%. The sign and magnitude of the applied strain are found to govern their deformation mechanisms, in which the dislocation types (full or partial dislocations) can be affected by the sign (tensile or compressive) and magnitude of the applied strain. In the early stages of bending, plastic deformation is controlled by 60° full dislocations. As the bending increases, Lomer dislocations can be frequently observed. When the strain increases to a significant level, 90° partial dislocations induced from the tensile surfaces of the bent nanowires are observed. This study provides a deeper understanding of the effect of the sign and magnitude of the bending strain on the deformation mechanisms in bent Si nanowires.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/15/1.4946855.html;jsessionid=fHsJgk9-BQG1ow1-EzBUq1j2.x-aip-live-06?itemId=/content/aip/journal/apl/108/15/10.1063/1.4946855&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/15/10.1063/1.4946855&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/15/10.1063/1.4946855'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,