Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. Wang, Q. Wang, A. Javey, R. Tu, and H. Dai, Appl. Phys. Lett. 83, 2432 (2003).
2. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science 293, 1289 (2001).
3. M. Chau, O. Englander, and L. Lin, in Proceedings of the 3rd IEEE Conference on Nanotechnology, San Francisco, 2003.
4. C. K. Chan, H. Peng, G. Lui, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nat. Nanotechnol. 3, 31 (2008).
5. A. S. Paulo, N. Arellano, J. Plaza, R. He, C. Carraro, R. Maboudian, R. T. Howe, J. Bokor, and P. D. Yang, Nano Lett. 7, 1100 (2007).
6. C. L. Hsin, W. Mai, Y. Gu, Y. Gao, C. T. Huang, Y. Liu, L. J. Chen, and Z. L. Wang, Adv. Mater. 20, 3919 (2008).
7. X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, and D. P. Yu, Adv. Mater. 21, 4937 (2009).
8. T. Zhu and J. Li, Prog. Mater. Sci. 55, 710 (2010).
9. R. A. Minamisawa, M. J. Süess, R. Spolenak, J. Faist, C. David, J. Gobrecht, K. K. Bourdelle, and H. Sigg, Nat. Commun. 3, 1096 (2012).
10. K. Zheng, R. W. Shao, Q. S. Deng, Y. F. Zhang, Y. Li, X. D. Han, Z. Zhang, and J. Zou, Appl. Phys. Lett. 104, 013111 (2014).
11. M. Menon, D. Srivastava, I. Ponomareva, and L. A. Chernozatonskii, Phys. Rev. B 70, 125313 (2004).
12. K. Zheng, X. D. Han, L. H. Wang, Y. F. Zhang, Y. H. Yue, Y. Qin, X. N. Zhang, and Z. Zhang, Nano Lett. 9, 2471 (2009).
13. X. D. Han, K. Zheng, Y. F. Zhang, X. N. Zhang, Z. Zhang, and Z. L. Wang, Adv. Mater. 19, 21122118 (2007).
14. G. Stan, S. Krylyuk, A. V. Davydov, I. Levin, and R. F. Cook, Nano Lett. 12, 2599 (2012).
15. D. Chrobak, N. Tymiak, A. Beaber, O. Ugurlu, W. W. Gerberich, and R. Nowak, Nat. Nanotechnol. 6, 480 (2011).
16. L. Pizzagalli, J. Godet, J. Guénolé, S. Brochard, E. Holmstrom, K. Nordlund, and T. Albaret, J. Phys.: Condens. Matter. 25, 055801 (2013).
17. X. D. Han, Y. F. Zhang, K. Zheng, X. N. Zhang, and Z. Zhang, Nano Lett. 7, 452 (2007).
18. J. Guénolé, S. Brochard, and J. Godet, Acta Mater. 59, 7464 (2011).
19. J. Godet, L. Pizzagalli, S. Brochard, and P. Beauchamp, Comput. Mater. Sci. 30, 16 (2004).
20. P. Valentini, W. W. Gerberich, and T. Dumitrica, Phys. Rev. Lett. 99, 175701 (2007).
21. A. J. Wagner, E. D. Hintsala, P. Kumar, W. W. Gerberich, and K. A. Mkhoyan, Acta Mater. 100, 256 (2015).
22. X. Z. Liao, Y. H. Zhao, Y. T. Zhu, R. Z. Valiev, and D. V. Gunderov, J. Appl. Phys. 96, 636 (2004).
23. K. Zheng, C. C. Wang, Y. Q. Cheng, Y. H. Yue, X. D. Han, Z. Zhang, Z. W. Shan, S. X. Mao, M. M. Ye, Y. D. Yin, and E. Ma, Nat. Commun. 1, 24 (2010).
24. L. D. Landau and E. M. Lifshitz, Theory of Elasticity ( Pergamon Press, New York, 1986).
25. P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. De Heer, Science 283, 1513 (1999).
26. R. Madec, B. Devincre, L. Kubin, T. Hoc, and D. Rodney, Science 301, 1879 (2003).
27. D. Rodney and R. Phillips, Phys. Rev. Lett. 82, 1704 (1999).
28. P. T. Bao, Y. B. Wang, X. Y. Cui, Q. Gao, H. W. Yen, H. W. Liu, W. K. Yeoh, X. Z. Liao, S. C. Du, H. H. Tan, Ch. Jagadish, J. Zou, S. P. Ringer, and R. K. Zheng, Appl. Phys. Lett. 104, 021904 (2014).
29. N. E. Dowling, Mechanical Behavior of Materials ( Prentice Hall, Englewood Cliffs, NJ, 1999), ISBN: 0-13-905720-X.
30. C. Z. Wang, J. Li, K. M. Ho, and S. Yip, Appl. Phys. Lett. 89, 051910 (2006).
31. I. L. F. Ray and D. J. H. Cockayne, Proc. R. Soc. London, Ser. A 325, 543 (1971).
32. J. Zou and D. J. H. Cockayne, Phys. Rev. B 49, 8086 (1994).
33. J. Zou, X. Z. Liao, D. J. H. Cockayne, and Z. M. Jiang, Appl. Phys. Lett. 81, 1996 (2002).

Data & Media loading...


Article metrics loading...



In this study, the deformation mechanisms of bent Si nanowires are investigated at the atomic scale with bending strain up to 12.8%. The sign and magnitude of the applied strain are found to govern their deformation mechanisms, in which the dislocation types (full or partial dislocations) can be affected by the sign (tensile or compressive) and magnitude of the applied strain. In the early stages of bending, plastic deformation is controlled by 60° full dislocations. As the bending increases, Lomer dislocations can be frequently observed. When the strain increases to a significant level, 90° partial dislocations induced from the tensile surfaces of the bent nanowires are observed. This study provides a deeper understanding of the effect of the sign and magnitude of the bending strain on the deformation mechanisms in bent Si nanowires.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd