Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/16/10.1063/1.4946805
1.
1. E. Yablonovitch, “ Photonic band-gap structures,” J. Opt. Soc. Am. B 10, 283 (1993).
http://dx.doi.org/10.1364/JOSAB.10.000283
2.
2. J. Kitagawa, M. Kodama, S. Koya, Y. Nishifuji, D. Armand, and Y. Kadoya, “ THz wave propagation in two-dimensional metallic photonic crystal with mechanically tunable photonic-bands,” Opt. Express 20, 1727117280 (2012).
http://dx.doi.org/10.1364/OE.20.017271
3.
3. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “ Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 1529915302 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.15299
4.
4. H. M. H. Chong and R. M. De La Rue, “ Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photonics Technol. Lett. 16, 15281530 (2004).
http://dx.doi.org/10.1109/LPT.2004.826781
5.
5. D. Yang, H. Tian, and Y. Ji, “ Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19, 20023 (2011).
http://dx.doi.org/10.1364/OE.19.020023
6.
6. O. Sakai, T. Sakaguchi, Y. Ito, and K. Tachibana, “ Interaction and control of millimetre-waves with microplasma arrays,” Plasma Phys. Controlled Fusion 47, B617B627 (2005).
http://dx.doi.org/10.1088/0741-3335/47/12B/S45
7.
7. L. Qi, C. Li, G. Fang, and X. Gao, “ The absorbing properties of two-dimensional plasma photonic crystals,” Plasma Sci. Technol. 17, 49 (2015).
http://dx.doi.org/10.1088/1009-0630/17/1/02
8.
8. J. Lo, J. Sokoloff, T. Callegari, and J. P. Boeuf, “ Reconfigurable electromagnetic band gap device using plasma as a localized tunable defect,” Appl. Phys. Lett. 96, 251501 (2010).
http://dx.doi.org/10.1063/1.3454778
9.
9. S. Varault, B. Gabard, J. Sokoloff, and S. Bolioli, “ Plasma-based localized defect for switchable coupling applications,” Appl. Phys. Lett. 98, 134103 (2011).
http://dx.doi.org/10.1063/1.3559605
10.
10. Q. Li-Mei, Y. Zi-Qiang, L. Feng, G. Xi, and L. Da-Zhi, “ Dispersion characteristics of two-dimensional unmagnetized dielectric plasma photonic crystal,” Chin. Phys. B 19, 034210 (2010).
http://dx.doi.org/10.1088/1674-1056/19/3/034210
11.
11. O. Sakai, T. Sakaguchi, and K. Tachibana, “ Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves,” J. Appl. Phys. 101, 073304 (2007).
http://dx.doi.org/10.1063/1.2713939
12.
12. B. Wang and M. A. Cappelli, “ A tunable microwave plasma photonic crystal filter,” Appl. Phys. Lett. 107, 171107 (2015).
http://dx.doi.org/10.1063/1.4934886
13.
13. C. Kenty, M. A. Easley, and B. T. Barnes, “ Gas temperatures and elastic losses in low pressure mercury-argon discharges,” J. Appl. Phys. 22, 1006 (1951).
http://dx.doi.org/10.1063/1.1700092
14.
14. M. L. Huber, A. Laesecke, and D. G. Friend, “ The vapor pressure of mercury,” NIST Interagency/Internal Report No. NISTIR 6643, 2006.
15.
15. T. Ito and K. Sakoda, “ Photonic bands of metallic systems. II. Features of surface plasmon polaritons,” Phys. Rev. B 64, 045117 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.045117
16.
16. J. D. Shumpert, W. J. Chappell, and L. P. B. Katehi, “ Parallel-plate mode reduction in conductor-backed slots using electromagnetic bandgap substrates,” IEEE Trans. Microwave Theory Tech. 47, 20992104 (1999).
http://dx.doi.org/10.1109/22.798005
17.
17. G. J. M. Hagelaar and L. C. Pitchford, “ Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14, 722733 (2005).
http://dx.doi.org/10.1088/0963-0252/14/4/011
18.
18. K. Loo, D. Stone, and R. Tozer, “ Modeling the electrical behavior of fluorescent lamps on the basis of a self-consistent collisional-radiative model,” in Industry Applications Conference (2004), Vol. 3, pp. 16461654.
19.
19. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light, 2nd ed. ( Princeton University Press , Princeton, New Jersey, 2008).
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/16/10.1063/1.4946805
Loading
/content/aip/journal/apl/108/16/10.1063/1.4946805
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/16/10.1063/1.4946805
2016-04-18
2016-12-07

Abstract

A fully tunable plasma photonic crystal is used to control the propagation of free space electromagnetic waves in the S to X bands of the microwave spectrum. An array of discharge plasma tubes forms a simple square crystal structure with the individual plasma dielectric constant tuned through variation in the plasma density. We show, through simulations and experiments, that transverse electric mode bandgaps exist, arising from the positive and negative dielectric constant regimes of the plasma, and that the respective bandgap frequencies can be shifted through changing the dielectric constant by varying discharge current density.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/16/1.4946805.html;jsessionid=herUY46hc7_MXhP1D-afKWu2.x-aip-live-02?itemId=/content/aip/journal/apl/108/16/10.1063/1.4946805&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/16/10.1063/1.4946805&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/16/10.1063/1.4946805'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,