Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K. Byun, P. Kim, I. Yoo, H. Chung, and K. Kim, Science 336, 1140 (2012).
2. X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, Nano Lett. 12, 2745 (2012).
3. A. M. Munshi, D. L. Dheeraj, V. T. Fauske, D. C. Kim, A. T. J. Van Helvoort, B. O. Fimland, and H. Weman, Nano Lett. 12, 4570 (2012).
4. Y. J. Hong and T. Fukui, ACS Nano 5, 7576 (2011).
5. M. A. Gluba, D. Amkreutz, G. V. Troppenz, J. Rappich, and N. H. Nickel, Appl. Phys. Lett. 103, 073102 (2013).
6. D. H. Lee, J. Yi, J. M. Lee, S. J. Lee, Y. J. Doh, H. Y. Jeong, Z. Lee, U. Paik, J. A. Rogers, and W. Il Park, ACS Nano 7, 301 (2013).
7. G. Lupina, J. Kitzmann, M. Lukosius, J. Dabrowski, A. Wolff, and W. Mehr, Appl. Phys. Lett. 103, 263101 (2013).
8. M. Kurosawa, N. Kawabata, T. Sadoh, and M. Miyao, Appl. Phys. Lett. 95, 132103 (2009).
9. F. Delachat, F. Antoni, P. Prathap, A. Slaoui, C. Cayron, and C. Ducros, EPJ Photovoltaics 4, 45102 (2013).
10. D. Tsukada, Y. Matsumoto, R. Sasaki, M. Takeishi, T. Saito, N. Usami, and T. Suemasu, J. Cryst. Growth 311, 3581 (2009).
11. X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, and Y. Fang, Small 12, 595 (2015).
12. M. Munshi and H. Weman, Phys. Status Solidi RRL. 7, 713 (2013).
13. Y. Cohin, O. Mauguin, L. Largeau, G. Patriarche, F. Glas, E. Søndergård, and J. C. Harmand, Nano Lett. 13, 2743 (2013).
14. D. Ren, I. M. Høiaas, J. F. Reinertsen, D. L. Dheeraj, A. M. Munshi, D. C. Kim, H. Weman, and B. O. Fimland, J. Vac. Sci. Technol. B 34, 02L117 (2016).
15. M. Shahidul Haque, H. A. Naseem, and W. D. Brown, J. Appl. Phys. 75, 3928 (1994).
16. T. J. Konno and R. Sinclair, Mater. Sci. Eng. A 179–180, 426 (1994).
17. O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, and S. R. Wenham, Appl. Phys. Lett. 73, 3214 (1998).
18. S. Y. Yoon, S. J. Park, K. H. Kim, J. Jang, and C. O. Kim, J. Appl. Phys. 87, 609 (2000).
19. K. Toko, M. Nakata, A. Okada, M. Sasase, N. Usami, and T. Suemasu, Int. J. Photoenergy 2015, 790242.
20. M. Kurosawa, T. Sadoh, and M. Miyao, J. Appl. Phys. 116, 173510 (2014).
21. K. R. Williams and R. S. Muller, J. Microelectromech. Syst. 5, 256 (1996).
22. A. Lita and J. Sanchez, J. Appl. Phys. 85, 876 (1999).
23. C. Gong, G. Lee, B. Shan, E. M. Vogel, R. M. Wallace, and K. Cho, J. Appl. Phys. 108, 123711 (2010).
24. K. Toko, K. Nakazawa, N. Saitoh, N. Yoshizawa, and T. Suemasu, Cryst. Growth Des. 15, 1535 (2015).
25. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, Nat. Nanotechnol. 3, 210 (2008).
26. I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, L. Carnel, G. Beaucarne, and J. Poortmans, Thin Solid Films 487, 113 (2005).
27. O. Nast and S. R. Wenham, J. Appl. Phys. 88, 124 (2000).
28. O. Nast and A. J. Hartmann, J. Appl. Phys. 88, 716 (2000).
29. J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, and S. Ryu, Nat. Commun. 3, 1024 (2012).
30. C. H. Hu, Y. Zheng, Y. Zhang, S. Q. Wu, Y. H. Wen, and Z. Z. Zhu, Solid State Commun. 151, 1128 (2011).
31. E. Aktürk, C. Ataca, and S. Ciraci, Appl. Phys. Lett. 96, 123112 (2010).
32. X. Dang, H. Dong, L. Wang, Y. Zhao, Z. Guo, T. Hou, Y. Li, and S. Lee, ACS Nano 9, 8562 (2015).
33. T. N. Nguyen, V. D. Nguyen, S. Jung, and J. Yi, Microelectron. Eng. 87, 2163 (2010).
34. C. C. Peng, C. K. Chung, and J. F. Lin, Acta Mater. 59, 6093 (2011).
35. T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, Phys. Rev. B 79, 205433 (2009).
36. Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, ACS Nano 2, 2301 (2008).

Data & Media loading...


Article metrics loading...



We report the fabrication of a Si(111) crystalline thin film on graphene by the aluminum-induced crystallization (AIC) process. The AIC process of Si(111) on graphene is shown to be enhanced compared to that on an amorphous SiO substrate, resulting in a more homogeneous Si(111) thin film structure as revealed by X-ray diffraction and atomic force microscopy measurements. Raman measurements confirm that the graphene is intact throughout the process, retaining its characteristic phonon spectrum without any appearance of the D peak. A red-shift of Raman peaks, which is more pronounced for the 2D peak, is observed in graphene after the crystallization process. It is found to correlate with the red-shift of the Si Raman peak, suggesting an epitaxial relationship between graphene and the adsorbed AIC Si(111) film with both the graphene and Si under tensile strain.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd