Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/17/10.1063/1.4947596
1.
1. A. I. Mcintosh, B. Yang, S. M. Goldup, M. Watkinson, and R. S. Donnan, “ Terahertz spectroscopy: A powerful new tool for the chemical sciences?,” Chem. Soc. Rev. 41(6), 20722082 (2012).
http://dx.doi.org/10.1039/C1CS15277G
2.
2. P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davies, “ Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett. 36(13), 25872589 (2011).
http://dx.doi.org/10.1364/OL.36.002587
3.
3. Y. Ren, R. Wallis, D. S. Jessop, R. Degl'Innocenti, A. Klimont, H. E. Beere, and D. A. Ritchie, “ Fast terahertz imaging using a quantum cascade amplifier,” Appl. Phys. Lett. 107, 011107 (2015).
http://dx.doi.org/10.1063/1.4926602
4.
4. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “ THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266 (2005).
http://dx.doi.org/10.1088/0268-1242/20/7/018
5.
5. C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “ The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2(1), 3345 (2012).
http://dx.doi.org/10.3978/j.issn.2223-4292.2012.01.04
6.
6. I. F. Akyildiz, J. M. Jornet, and C. Han, “ Terahertz band: Next frontier for wireless communications,” Phys. Commun. 12, 1632 (2014).
http://dx.doi.org/10.1016/j.phycom.2014.01.006
7.
7. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Lauther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “ Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977981 (2013).
http://dx.doi.org/10.1038/nphoton.2013.275
8.
8. H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “ 24 Gbit/s data transmission in 300 GHz band for future terahertz communications,” Electron. Lett. 48(15), 953954 (2012).
http://dx.doi.org/10.1049/el.2012.1708
9.
9. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Kilma, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “ Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351355 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.02.024
10.
10. J. Ye, M. F. Craciun, M. Koshino, S. Russo, S. Inoue, H. Yuan, H. Shimotani, A. F. Morpurgo, and Y. Iwasa, “ Accessing the transport properties of graphene and its multilayers at high carrier density,” Proc. Natl. Acad. Sci. 108(32), 1300213006 (2011).
http://dx.doi.org/10.1073/pnas.1018388108
11.
11. R. Degl'Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “ Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 25482554 (2014).
http://dx.doi.org/10.1021/nn406136c
12.
12. R. Yan, B. Sensale-Rodriguez, L. Liu, D. Jena, and H. Xing, “ A new class of electrically tunable metamaterial terahertz modulators,” Opt. Express 20, 2866428671 (2012).
http://dx.doi.org/10.1364/OE.20.028664
13.
13. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “ Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
http://dx.doi.org/10.1038/ncomms1787
14.
14. G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “ Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 15591566 (2015).
http://dx.doi.org/10.1021/acsphotonics.5b00317
15.
15. R. A. Shelby, D. R. Smith, and S. Schultz, “ Experimental verification of a negative index of refraction,” Science 292(5514), 7779 (2001).
http://dx.doi.org/10.1126/science.1058847
16.
16. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “ Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 13511353 (2004).
http://dx.doi.org/10.1126/science.1105371
17.
17. Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “ Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214219 (2014).
http://dx.doi.org/10.1021/nl403751p
18.
18. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “ Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 12571264 (2013).
http://dx.doi.org/10.1021/nl3047943
19.
19. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “ Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 65266532 (2014).
http://dx.doi.org/10.1021/nl503104n
20.
20. P. R. Kidambi, C. Ducati, B. Blubak, D. Gardiner, R. S. Weatherup, M.-B. Martin, P. Sensor, H. Coles, and S. Hofmann, “ The parameter space of graphene chemical vapor deposition on polycrystalline Cu,” J. Phys. Chem. C 116(42), 2249222501 (2012).
http://dx.doi.org/10.1021/jp303597m
21.
21. P. R. Kidambi, B. C. Bayer, R. Blume, Z.-J. Wang, C. Baehtz, R. S. Weatherup, M.-G. Willinger, R. Schloegl, and S. Hofmann, “ Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper,” Nano Lett. 13(10), 47694778 (2013).
http://dx.doi.org/10.1021/nl4023572
22.
22. T. Mueller, F. Xia, and P. Avouris, “ Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4, 297301 (2010).
http://dx.doi.org/10.1038/nphoton.2010.40
23.
23. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “ Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 10991119 (1983).
http://dx.doi.org/10.1364/AO.22.001099
24.
24. J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, “ Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93, 131905 (2008).
http://dx.doi.org/10.1063/1.2990753
25.
25. Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “ Plasmonic nanoantenna arrays for the visible,” Metamaterials 2(1), 4551 (2008).
http://dx.doi.org/10.1016/j.metmat.2008.03.001
26.
26. L. Razzari, A. Toma, M. Clerici, M. Shalaby, G. Das, C. Liberale, M. Chirumamilla, R. P. Zaccaria, F. De Angelis, M. Peccianti, R. Morandotti, and E. Di Fabrizio, “ Terahertz dipole nanoantenna arrays: Resonance characteristics,” Plasmonics 8(1), 133138 (2013).
http://dx.doi.org/10.1007/s11468-012-9439-0
27.
27. R. Degl'Innocenti, D. S. Jessop, C. W. O. Sol, L. Xiao, S. J. Kindness, H. Lin, J. A. Zeitler, P. Braeuninger-Weimer, S. Hofmann, Y. Ren, V. S. Kamboj, J. P. Griffiths, H. E. Beere, and D. A. Ritchie, “ Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas,” ACS Photonics 3(3), 464470 (2016).
http://dx.doi.org/10.1021/acsphotonics.5b00672
28.
28. D. S. Jessop, C. W. O. Sol, L. Xiao, S. J. Kindness, P. Braeuninger-Weimer, H. Lin, J. Griffiths, Y. Ren, V. S. Kamboj, C. X. Ren, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl'Innocenti, “ Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene,” Proc. SPIE 9747, 97471E (2016).
http://dx.doi.org/10.1117/12.2210984
29.
29. S. Russo, M. F. Craciun, M. Yamamoto, A. F. Morpurgo, and S. Tarucha, “ Contact resistance in graphene-based devices,” Physica E 42(4), 677679 (2010).
http://dx.doi.org/10.1016/j.physe.2009.11.080
30.
30. D. B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G. S. Tulevski, J. C. Tsang, and P. Avouris, “ Chemical doping and electron−hole conduction asymmetry in graphene devices,” Nano Lett. 9(1), 388392 (2008).
http://dx.doi.org/10.1021/nl803214a
31.
31.See supplementary material at http://dx.doi.org/10.1063/1.4947596 for an additional simulation of reflectivity at resonance (Figure S1) and measured graphene resistance (Figure S2).[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/17/10.1063/1.4947596
Loading
/content/aip/journal/apl/108/17/10.1063/1.4947596
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/17/10.1063/1.4947596
2016-04-26
2016-12-06

Abstract

The terahertz (THz) region of the electromagnetic spectrum holds great potential in many fields of study, from spectroscopy to biomedical imaging, remote gas sensing, and high speed communication. To fully exploit this potential, fast optoelectronic devices such as amplitude and phase modulators must be developed. In this work, we present a room temperature external THz amplitude modulator based on plasmonic bow-tie antenna arrays with graphene. By applying a modulating bias to a back gate electrode, the conductivity of graphene is changed, which modifies the reflection characteristics of the incoming THz radiation. The broadband response of the device was characterized by using THz time-domain spectroscopy, and the modulation characteristics such as the modulation depth and cut-off frequency were investigated with a 2.0 THz single frequency emission quantum cascade laser. An optical modulation cut-off frequency of 105 ± 15 MHz is reported. The results agree well with a lumped element circuit model developed to describe the device.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/17/1.4947596.html;jsessionid=Bxu-HUfXL5hGnPd-G8n6qk_l.x-aip-live-03?itemId=/content/aip/journal/apl/108/17/10.1063/1.4947596&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/17/10.1063/1.4947596&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/17/10.1063/1.4947596'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,