Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/18/10.1063/1.4948588
1.
1. M. Rycenga, X. Xia, C. H. Moran, F. Zhou, D. Qin, Z.-Y. Li, and Y. Xia, Angew. Chem., Int. Ed. 50, 5473 (2011).
http://dx.doi.org/10.1002/anie.201101632
2.
2. S. M. Stranahan and K. A. Willets, Nano Lett. 10, 3777 (2010).
http://dx.doi.org/10.1021/nl102559d
3.
3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
http://dx.doi.org/10.1038/nmat2162
4.
4. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, Science 349, 165 (2015).
http://dx.doi.org/10.1126/science.aab2051
5.
5. S. Linic, P. Christopher, and D. B. Ingram, Nat. Mater. 10, 911 (2011).
http://dx.doi.org/10.1038/nmat3151
6.
6. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, Science 328, 1135 (2010).
http://dx.doi.org/10.1126/science.1187949
7.
7. G. Konstantatos and E. H. Sargent, Nat. Nanotechnol. 5, 391 (2010).
http://dx.doi.org/10.1038/nnano.2010.78
8.
8. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, Nat. Commun. 2, 579 (2011).
http://dx.doi.org/10.1038/ncomms1589
9.
9. G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, Adv. Mater. 27, 8028 (2015).
http://dx.doi.org/10.1002/adma.201570327
10.
10. Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, Science 337, 450 (2012).
http://dx.doi.org/10.1126/science.1223504
11.
11. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, Nat. Photonics 1, 589 (2007).
http://dx.doi.org/10.1038/nphoton.2007.171
12.
12. T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, Nat. Commun. 6, 7788 (2015).
http://dx.doi.org/10.1038/ncomms8788
13.
13. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, Nat. Photonics 8, 835 (2014).
http://dx.doi.org/10.1038/nphoton.2014.228
14.
14. A. Rose, T. B. Hoang, F. McGuire, J. J. Mock, C. Ciracì, D. R. Smith, and M. H. Mikkelsen, Nano Lett. 14, 4797 (2014).
http://dx.doi.org/10.1021/nl501976f
15.
15. X. Yin, M. Schäferling, A.-K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, Nano Lett. 15, 4255 (2015).
http://dx.doi.org/10.1021/nl5042325
16.
16. A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, ACS Photonics 1, 833 (2014).
http://dx.doi.org/10.1021/ph500121d
17.
17. Y. Abate, R. E. Marvel, J. I. Ziegler, S. Gamage, M. H. Javani, M. I. Stockman, and R. F. Haglund, Sci. Rep. 5, 13997 (2015).
http://dx.doi.org/10.1038/srep13997
18.
18. A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, Nat. Commun. 6, 6939 (2015).
http://dx.doi.org/10.1038/ncomms7939
19.
19. F. Huang and J. J. Baumberg, Nano Lett. 10, 1787 (2010).
http://dx.doi.org/10.1021/nl1004114
20.
20. F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, Appl. Phys. Lett. 102, 221102 (2013).
http://dx.doi.org/10.1063/1.4809516
21.
21. J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, Nano Lett. 12, 1757 (2012).
http://dx.doi.org/10.1021/nl204596h
22.
22. C. Novo, A. M. Funston, A. K. Gooding, and P. Mulvaney, J. Am. Chem. Soc. 131, 14664 (2009).
http://dx.doi.org/10.1021/ja905216h
23.
23. J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, Nano Lett. 12, 5598 (2012).
http://dx.doi.org/10.1021/nl302656d
24.
24. Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, Nano Lett. 14, 214 (2014).
http://dx.doi.org/10.1021/nl403751p
25.
25. K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, Appl. Phys. Lett. 89, 103107 (2006).
http://dx.doi.org/10.1063/1.2335812
26.
26. J. Müller, C. Sönnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, Appl. Phys. Lett. 81, 171 (2002).
http://dx.doi.org/10.1063/1.1491003
27.
27. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, Nano Lett. 13, 1257 (2013).
http://dx.doi.org/10.1021/nl3047943
28.
28. J. B. Lassiter, F. McGuire, J. J. Mock, C. Ciracì, R. T. Hill, B. J. Wiley, A. Chilkoti, and D. R. Smith, Nano Lett. 13, 5866 (2013).
http://dx.doi.org/10.1021/nl402660s
29.
29. Q. Zhang, W. Li, L.-P. Wen, J. Chen, and Y. Xia, Chem. A Eur. J. 16, 10234 (2010).
http://dx.doi.org/10.1002/chem.201000341
30.
30. T. B. Hoang, J. Huang, and M. H. Mikkelsen, “ Colloidal synthesis of nanopatch antennas for applications in plasmonics and nanophotonics,” J. Visualized Exp. (to be published, 2016).
http://dx.doi.org/10.3791/53876
31.
31. D. Daghero, F. Paolucci, A. Sola, M. Tortello, G. A. Ummarino, M. Agosto, R. S. Gonnelli, J. R. Nair, and C. Gerbaldi, Phys. Rev. Lett. 108, 066807 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.066807
32.
32. H. Yuan, H. Shimotani, J. Ye, S. Yoon, H. Aliah, A. Tsukazaki, M. Kawasaki, and Y. Iwasa, J. Am. Chem. Soc. 132, 18402 (2010).
http://dx.doi.org/10.1021/ja108912x
33.
33. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, Opt. Express 17, 18330 (2009).
http://dx.doi.org/10.1364/OE.17.018330
34.
34. A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, Nano Lett. 13, 3470 (2013).
http://dx.doi.org/10.1021/nl4006194
35.
35. M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, Phys. Rev. B 90, 165409 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.165409
36.
36. N. Parveen and M. Schönhoff, Macromolecules 46, 7880 (2013).
http://dx.doi.org/10.1021/ma401625r
37.
37. A. G. Cherstvy, J. Phys. Chem. B 118, 4552 (2014).
http://dx.doi.org/10.1021/jp502460v
38.
38. K. Motobayashi, K. Minami, N. Nishi, T. Sakka, and M. Osawa, J. Phys. Chem. Lett. 4, 3110 (2013).
http://dx.doi.org/10.1021/jz401645c
39.
39. X. Zhang, E. M. Hicks, J. Zhao, G. C. Schatz, and R. P. Van Duyne, Nano Lett. 5, 1503 (2005).
http://dx.doi.org/10.1021/nl050873x
40.
40. A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, Adv. Opt. Mater. 4, 634 (2016).
http://dx.doi.org/10.1002/adom.201500602
41.
41. A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, Nature 492, 86 (2012).
http://dx.doi.org/10.1038/nature11615
42.
42. N. Nishi, Y. Hirano, T. Motokawa, and T. Kakiuchi, Phys. Chem. Chem. Phys. 15, 11615 (2013).
http://dx.doi.org/10.1039/c3cp51463c
43.
43. G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, Nano Lett. 15, 3578 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b01062
44.
44. T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, Nano Lett. 16, 270 (2016).
http://dx.doi.org/10.1021/acs.nanolett.5b03724
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/18/10.1063/1.4948588
Loading
/content/aip/journal/apl/108/18/10.1063/1.4948588
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/18/10.1063/1.4948588
2016-05-06
2016-12-03

Abstract

We report an experimental demonstration of electrical tuning of plasmon resonances of optical nanopatch antennas over a wide wavelength range. The antennas consist of silver nanocubes separated from a goldfilm by a thin 8 nm polyelectrolyte spacer layer. By using ionic liquid and indium tin oxide coated glass as a top electrode, we demonstrate dynamic and reversible tuning of the plasmon resonance over 100 nm in the visible wavelength range using low applied voltages between −3.0 V and 2.8 V. The electrical potential is applied across the nanoscale gap causing changes in the gap thickness and dielectric environment which, in turn, modifies the plasmon resonance. The observed tuning range is greater than the full-width-at-half-maximum of the plasmon resonance, resulting in a tuning figure of merit of 1.05 and a tuning contrast greater than 50%. Our results provide an avenue to create active and reconfigurable integrated nanophotonic components for applications in optoelectronics and sensing.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/18/1.4948588.html;jsessionid=rgSBfDQU2YxLsaz2cSFffCq_.x-aip-live-02?itemId=/content/aip/journal/apl/108/18/10.1063/1.4948588&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/18/10.1063/1.4948588&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/18/10.1063/1.4948588'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,