Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Rycenga, X. Xia, C. H. Moran, F. Zhou, D. Qin, Z.-Y. Li, and Y. Xia, Angew. Chem., Int. Ed. 50, 5473 (2011).
2. S. M. Stranahan and K. A. Willets, Nano Lett. 10, 3777 (2010).
3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
4. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, Science 349, 165 (2015).
5. S. Linic, P. Christopher, and D. B. Ingram, Nat. Mater. 10, 911 (2011).
6. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, Science 328, 1135 (2010).
7. G. Konstantatos and E. H. Sargent, Nat. Nanotechnol. 5, 391 (2010).
8. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, Nat. Commun. 2, 579 (2011).
9. G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, Adv. Mater. 27, 8028 (2015).
10. Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, Science 337, 450 (2012).
11. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, Nat. Photonics 1, 589 (2007).
12. T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, Nat. Commun. 6, 7788 (2015).
13. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, Nat. Photonics 8, 835 (2014).
14. A. Rose, T. B. Hoang, F. McGuire, J. J. Mock, C. Ciracì, D. R. Smith, and M. H. Mikkelsen, Nano Lett. 14, 4797 (2014).
15. X. Yin, M. Schäferling, A.-K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, Nano Lett. 15, 4255 (2015).
16. A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, ACS Photonics 1, 833 (2014).
17. Y. Abate, R. E. Marvel, J. I. Ziegler, S. Gamage, M. H. Javani, M. I. Stockman, and R. F. Haglund, Sci. Rep. 5, 13997 (2015).
18. A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, Nat. Commun. 6, 6939 (2015).
19. F. Huang and J. J. Baumberg, Nano Lett. 10, 1787 (2010).
20. F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, Appl. Phys. Lett. 102, 221102 (2013).
21. J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, Nano Lett. 12, 1757 (2012).
22. C. Novo, A. M. Funston, A. K. Gooding, and P. Mulvaney, J. Am. Chem. Soc. 131, 14664 (2009).
23. J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, Nano Lett. 12, 5598 (2012).
24. Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, Nano Lett. 14, 214 (2014).
25. K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, Appl. Phys. Lett. 89, 103107 (2006).
26. J. Müller, C. Sönnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, Appl. Phys. Lett. 81, 171 (2002).
27. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, Nano Lett. 13, 1257 (2013).
28. J. B. Lassiter, F. McGuire, J. J. Mock, C. Ciracì, R. T. Hill, B. J. Wiley, A. Chilkoti, and D. R. Smith, Nano Lett. 13, 5866 (2013).
29. Q. Zhang, W. Li, L.-P. Wen, J. Chen, and Y. Xia, Chem. A Eur. J. 16, 10234 (2010).
30. T. B. Hoang, J. Huang, and M. H. Mikkelsen, “ Colloidal synthesis of nanopatch antennas for applications in plasmonics and nanophotonics,” J. Visualized Exp. (to be published, 2016).
31. D. Daghero, F. Paolucci, A. Sola, M. Tortello, G. A. Ummarino, M. Agosto, R. S. Gonnelli, J. R. Nair, and C. Gerbaldi, Phys. Rev. Lett. 108, 066807 (2012).
32. H. Yuan, H. Shimotani, J. Ye, S. Yoon, H. Aliah, A. Tsukazaki, M. Kawasaki, and Y. Iwasa, J. Am. Chem. Soc. 132, 18402 (2010).
33. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, Opt. Express 17, 18330 (2009).
34. A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, Nano Lett. 13, 3470 (2013).
35. M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, Phys. Rev. B 90, 165409 (2014).
36. N. Parveen and M. Schönhoff, Macromolecules 46, 7880 (2013).
37. A. G. Cherstvy, J. Phys. Chem. B 118, 4552 (2014).
38. K. Motobayashi, K. Minami, N. Nishi, T. Sakka, and M. Osawa, J. Phys. Chem. Lett. 4, 3110 (2013).
39. X. Zhang, E. M. Hicks, J. Zhao, G. C. Schatz, and R. P. Van Duyne, Nano Lett. 5, 1503 (2005).
40. A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, Adv. Opt. Mater. 4, 634 (2016).
41. A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, Nature 492, 86 (2012).
42. N. Nishi, Y. Hirano, T. Motokawa, and T. Kakiuchi, Phys. Chem. Chem. Phys. 15, 11615 (2013).
43. G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, Nano Lett. 15, 3578 (2015).
44. T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, Nano Lett. 16, 270 (2016).

Data & Media loading...


Article metrics loading...



We report an experimental demonstration of electrical tuning of plasmon resonances of optical nanopatch antennas over a wide wavelength range. The antennas consist of silver nanocubes separated from a goldfilm by a thin 8 nm polyelectrolyte spacer layer. By using ionic liquid and indium tin oxide coated glass as a top electrode, we demonstrate dynamic and reversible tuning of the plasmon resonance over 100 nm in the visible wavelength range using low applied voltages between −3.0 V and 2.8 V. The electrical potential is applied across the nanoscale gap causing changes in the gap thickness and dielectric environment which, in turn, modifies the plasmon resonance. The observed tuning range is greater than the full-width-at-half-maximum of the plasmon resonance, resulting in a tuning figure of merit of 1.05 and a tuning contrast greater than 50%. Our results provide an avenue to create active and reconfigurable integrated nanophotonic components for applications in optoelectronics and sensing.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd