Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/2/10.1063/1.4939045
1.
1. M. Caironi, Y.-Y. Noh, and H. Sirringhaus, Semicond. Sci. Technol. 26, 034006 (2011).
http://dx.doi.org/10.1088/0268-1242/26/3/034006
2.
2. M. Cirit, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 8, 1033 (1989).
http://dx.doi.org/10.1109/43.39064
3.
3. V. Subramanian, Organic Field-Effect Transistors ( CRC Press, 2007), pp. 489505.
http://dx.doi.org/10.1201/9781420008012
4.
4. K. Myny, M. Rockelé, A. Chasin, S. Member, D. Pham, J. Steiger, S. Botnaras, D. Weber, B. Herold, J. Ficker, B. Van Der Putten, G. H. Gelinck, J. Genoe, W. Dehaene, and P. Heremans, IEEE Trans. Electron Devices 61, 2387 (2014).
http://dx.doi.org/10.1109/TED.2014.2320553
5.
5. R. Blache, J. Krumm, and W. Fix, Dig. Tech. Pap. - IEEE Int. Solid-state Circuits Conf. 2009, 208.
http://dx.doi.org/10.1109/ISSCC.2009.4977381
6.
6. S. G. Higgins, B. V. O. Muir, J. Wade, J. Chen, B. Striedinger, H. Gold, B. Stadlober, M. Caironi, J.-S. Kim, J. H. G. Steinke, and A. J. Campbell, Adv. Electron. Mater. 1, 1500024 (2015).
http://dx.doi.org/10.1002/aelm.201500024
7.
7. V. Wagner, P. Woübkenberg, A. Hoppe, and J. Seekamp, Appl. Phys. Lett. 89, 243515 (2006).
http://dx.doi.org/10.1063/1.2405414
8.
8. S. M. Sze and K. K. Ng., in Physics of Semiconductor Devices, edited by S. M. Sze and K. K. Ng., 3rd ed. ( John Wiley & Sons, Inc., Hoboken, NJ, USA, 2007), pp. 293373.
9.
9. U. Palfinger, C. Auner, H. Gold, A. Haase, J. Kraxner, T. Haber, M. Sezen, W. Grogger, G. Domann, G. Jakopic, J. R. Krenn, and B. Stadlober, Adv. Mater. 22, 5115 (2010).
http://dx.doi.org/10.1002/adma.201001947
10.
10. H. Gold, A. Haase, A. Fian, C. Prietl, B. Striedinger, F. Zanella, N. Marjanović, R. Ferrini, J. Ring, K.-D. Lee, R. Jiawook, A. Drost, M. König, R. Müller, K. Myny, J. Genoe, U. Kleb, H. Hirshy, R. Prétôt, J. Kraxner, R. Schmied, and B. Stadlober, Org. Electron. 22, 140 (2015).
http://dx.doi.org/10.1016/j.orgel.2015.03.047
11.
11. H. Klauk, Organic Electronics II: More Materials and Applications ( Wiley-VCH Verlag & Co., Weinheim, 2012).
12.
12. S. G. Higgins, F. L. Boughey, R. Hills, J. H. G. Steinke, B. V. O. Muir, and A. J. Campbell, ACS Appl. Mater. Interfaces 7, 5045 (2015).
http://dx.doi.org/10.1021/am508316f
13.
13. M. M. Voigt, A. Guite, D.-Y. Chung, R. U. A. Khan, A. J. Campbell, D. D. C. Bradley, F. Meng, J. H. G. Steinke, S. Tierney, I. McCulloch, H. Penxten, L. Lutsen, O. Douheret, J. Manca, U. Brokmann, K. Sönnichsen, D. Hülsenberg, W. Bock, C. Barron, N. Blanckaert, S. Springer, J. Grupp, and A. Mosley, Adv. Funct. Mater. 20, 239 (2010).
http://dx.doi.org/10.1002/adfm.200901597
14.
14. M. Kastler and S. Köhler, U.S. patent application WO 2010/136385 A1 (2010).
15.
15. N. L. Vaklev, R. Müller, B. V. O. Muir, D. T. James, R. Pretot, P. van der Schaaf, J. Genoe, J.-S. Kim, J. H. G. Steinke, and A. J. Campbell, Adv. Mater. Interfaces 1, 1300123 (2014).
http://dx.doi.org/10.1002/admi.201300123
16.
16. S. Mandal, G. Dell'Erba, A. Luzio, S. G. Bucella, A. Perinot, A. Calloni, G. Berti, G. Bussetti, L. Duò, A. Facchetti, Y.-Y. Noh, and M. Caironi, Org. Electron. 20, 132 (2015).
http://dx.doi.org/10.1016/j.orgel.2015.02.006
17.
17. Z. Chen, M. J. Lee, R. S. Ashraf, Y. Gu, S. Albert-Seifried, M. M. Nielsen, B. Schroeder, T. D. Anthopoulos, M. Heeney, I. McCulloch, and H. Sirringhaus, Adv. Mater. 24, 647 (2012).
http://dx.doi.org/10.1002/adma.201102786
18.
18. H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, and A. Facchetti, Nature 457, 679 (2009).
http://dx.doi.org/10.1038/nature07727
19.
19.See supplementary material at http://dx.doi.org/10.1063/1.4939045 for details of device DC characterisation data, and a schematic of the AC measurement setup.[Supplementary Material]
20.
20. A. Luzio, L. Criante, V. D'Innocenzo, and M. Caironi, Sci. Rep. 3, 3425 (2013).
http://dx.doi.org/10.1038/srep03425
21.
21. H. Sirringhaus, Adv. Mater. 26, 1319 (2014).
http://dx.doi.org/10.1002/adma.201304346
22.
22. J. Rivnay, M. Toney, Y. Zheng, I. Kauvar, Z. Chen, V. Wagner, A. Facchetti, and A. Salleo, Adv. Mater. 22, 4359 (2010).
http://dx.doi.org/10.1002/adma.201001202
23.
23. Y.-Y. Noh, N. Zhao, M. Caironi, and H. Sirringhaus, Nat. Nanotechnol. 2, 784 (2007).
http://dx.doi.org/10.1038/nnano.2007.365
24.
24. S. Mandal and Y.-Y. Noh, Semicond. Sci. Technol. 30, 064003 (2015).
http://dx.doi.org/10.1088/0268-1242/30/6/064003
25.
25. V. Subramanian, J. Cen, A. de la Fuente Vornbrock, G. Grau, H. Kang, R. Kitsomboonloha, D. Soltman, and H.-Y. Tseng, Proc. IEEE 103, 567 (2015).
http://dx.doi.org/10.1109/JPROC.2015.2408321
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/2/10.1063/1.4939045
Loading
/content/aip/journal/apl/108/2/10.1063/1.4939045
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/2/10.1063/1.4939045
2016-01-12
2016-09-28

Abstract

Using a combination of nanoimprint lithography, gate-source/drain self-alignment, and gravure and inkjet printing, we fabricate organic field-effect transistors on flexible plastic substrates with gate-source and gate-drain electrode overlap capacitances of  < 1 pF, equivalent to channel-width normalised capacitances of  = 0.15–0.23 pF mm−1. We compare photopatterned and nanoimprint lithography patterned channels of  ≈ 3.8 m and  ≈ 800 nm, respectively. The reduction in was found on average to result in order of magnitude greater switching frequencies. Gravure printing the dielectric (versus photo-patterning) was found to yield an order of magnitude lower overlap capacitance = 0.03 pF mm−1, at the expense of greater processing variation. Inkjet printed p- and n-type polymeric organic semiconductors were used to fabricate organic-field effect transistors with a peak cutoff frequencies of  = 9.0 ± 0.3 MHz at  = 30 V, and transition frequencies of  = 3.3 ± 0.2 MHz at  = 30 V.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/2/1.4939045.html;jsessionid=TYQ4A8AfHILWxkTx7eonp-Fa.x-aip-live-03?itemId=/content/aip/journal/apl/108/2/10.1063/1.4939045&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/2/10.1063/1.4939045&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/2/10.1063/1.4939045'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,